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Muti-objective energy-efficient hybrid flow shop
scheduling using Q-learning and VNS driven NSGA-II
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1. Introduction

Hybrid flow shop scheduling (HFS) problems are commonly
encountered in manufacturing environments. They are extensions
of classical flow shop scheduling problems in which a set of jobs

production efficiency is essential, by no means should it be the
only factor to be considered in manufacturing operations. In recent
years, it has been increasingly recognized that economic develop-
ment without environmental considerations may cause irreversible
damage to the world environment. Statistical data shows the
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Pe
to
re Energy-efficient scheduling is highly necessary for energy-intensive industries, such as glass, mould or chemical production.
Inspired by a real-world glass-ceramics production process, this paper investigates a bi-criteria energy-efficient two-stage
| hybrid flow shop scheduling problem, in which parallel machines with eligibility are at stage 1 and a batch machine is at
N - stage 2. The performance measures considered are makespan and total energy consumption. Time-of-use (TOU) electricity
prices and different states of machines (working, idle and turnoff) are integrated. To tackle this problem, a mixed integer — . .
o programming (MIP) is formulated, based on which an augmented e-constraint (AUGMECON) method is adopted to obtain g E * ﬂtE Ast 7k$ I Hj
ht the exact Pareto front. A problem-tailored constructive heuristic method with local search strategy, a bi-objective tabu search I]‘ (== §)][1
algorithm and a bi-objective ant colony optimisation algorithm are developed to deal with medium- and large-scale problems.
| Extensive computational experiments are conducted, and a real-world case is solved. The results show effectiveness of the ( M o E - H FS)

proposed methods, in particular the bi-objective tabu search.
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