Computers & Operations Research 159 (2023) 106360

Contents lists available at ScienceDirect

Computers &

ns Research

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

ELSEVIER

Check for

Multi-objective energy-efficient hybrid flow shop scheduling using e
Q-learning and GVNS driven NSGA-II

Peize Li, Qiang Xue, Ziteng Zhang, Jian Chen , Dequn Zhou

College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China

ARTICLE INFO ABSTRACT

Keywords:

Hybrid flow shop
Energy-efficient scheduling
Multi-objective optimization
Time-of-use tariffs
Q-learning

The urgent mission for carbon peak and carbon neutrality is demanding greater industrial sustainability. Energy-
efficient hybrid flow shop scheduling problem (EEHFSP) has been raising increasing attention in recent years.
This paper studies a new EEHFSP with uniform machines to minimize total tardiness, total energy cost, and
carbon trading cost. Time-of-use tariffs and power down strategies are simultaneously adopted. A novel multi-
objective mixed-integer nonlinear programming model for the problem is proposed. To solve the model, we
propose a Q-learning and general variable neighborhood search (GVNS) driven non-dominated sorting genetic
algorithm II (QVNS-NSGA-II). The novelty of the algorithm is that we incorporate Q-learning into GVNS to guide
premium adaptive operator selection throughout the shaking and local search processes. A distinguishing feature
is that the states and actions of Q-learning are set as neighborhood structures and local search operators. The Q-
learning-driven GVNS is embedded into NSGA-II to promote the exploration and exploitation capability.
Experimental results show that the proposed QVNS-NSGA-II outperforms NSGA-II, improved Jaya, and modified
MOEA/D in terms of the quantity, quality of Pareto solutions, and computational efficiency. Sensitivity analysis
also derives several managerial implications. The proposed approach can be applied to improve sustainability

and productivity for hybrid flow shop manufacturers.

1. Introduction

Energy shortage is one of the most serious problems in many coun-
tries due to disrupted supply chains, such as the COVID-19 pandemic or
the Russian-Ukrainian conflict. Besides, the majority of the energy we
consumed is non-renewable, such as oil, natural gas, and coal in Fig. 1
(IEA, 2021). Energy consumption is accompanied by the release of large
amounts of greenhouse gases. This situation exacerbates climate change,
making energy-saving and carbon-reducing issues more of vital signifi-
cance and indispensable for countries around the world. For example, in
2021, China launched a thirty-year plan “carbon peaking” and “carbon
neutrality” aiming at reaching the CO2 emissions peak before 2030 and
achieving carbon neutrality ahead of 2060 (The State Council of the
People’s Republic of China, 2021).

It is demonstrated that the industry sector consumed over 40% of
electricity and 50% of coal over the last five decades in Fig. 2 (IEA,
2021). Thus, the industrial sector is primarily responsible for estab-
lishing sustainability to reduce energy-consuming and alleviate envi-
ronmental impacts e.g., global warming. Efforts are therefore devoted to
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energy-efficient scheduling, mainly focusing on improving the ratio
between energy input and the desired output of production or service
systems, i.e., energy efficiency.

The hybrid flow shop scheduling problem (HFSP), also known as the
flexible flow shop scheduling problem, is a important production sched-
uling problem widely confronted by many industries, such as electronics
(Yue et al., 2023), steel (Jiang et al., 2023) and glass industries (Wang
et al., 2020). The HFSP enables flexibility and is suitable for multi-
variety and small-batch production (Ribas et al., 2010). It is composed
of multiple production stages, where each stage consists of multiple
parallel machines. Each job has to go through all stages in the same
order string.

Most research assumes that parallel machines at each stage of the
HFSP are identical for simplicity. However, the machines in the same
stage can run at different speeds. Particularly, higher processing speeds
require higher energy consumption rates but lead to shorter processing
times, while lower processing speeds take the converse effect (Wu and
Che, 2020). The scenario is referred to as a uniform machine environ-
ment, to which only 8% of the research on the HFSP contributes (Lee and
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Fig. 1. Share of world total final consumption by source, 2019.
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Fig. 2. Electricity total final consumption by sector, 1971-2019.

Loong, 2019). Therefore, this paper extends the study of HFSP with
uniform parallel machines.

Usually, classical HFSP discussed production-related indicators such
as due date, makespan, and total tardiness (Chen et al., 2020a; Chen
et al., 2020b). Taking production efficiency as foundational consider-
ation, the energy-efficient hybrid flow shop scheduling problem (EEHFSP)
naturally focuses on multi-objective optimization for integrating both
production and environmental concerns (e.g., makespan Cpax and total
energy consumption TEC).

This paper investigates an EEHFSP to minimize the three objectives
concurrently, namely total tardiness time (TT), total energy cost (TEC), and
carbon trading cost (CTC). TT is a typical time-related objective for make-
to-order production, playing a key role in satisfying customers’
demands.

TEC and CTC are included for energy efficiency, wherein CTC is first
defined and considered for lowering carbon emissions. In practice, the
carbon trading markets have been established in major economies, such
as the US, the EU, and China. For example, the EU has established the
largest carbon market EU Emissions Trading System. The greenhouse
gases that can be emitted by plants are limited by a ‘cap’ on the number
of emission allowances. Within the cap, companies receive or buy
emission allowances, which they can trade as needed (European Com-
mission, 2023).

Energy-efficient strategies (EES) at the operational level are developed
by researchers to cut down TEC (Gahm et al., 2016, Li and Wang, 2022).
These operational strategies can be divided into two categories: “energy
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supply” and “energy demand” (Gahm et al., 2016):

e Energy supply: This class includes the EES with respect to energy
suppliers, e.g., real-time pricing (Khalaf and Wang, 2018), time-of-use
(TOU) tariffs (Luo et al., 2013, Cui and Lu, 2021, Ding et al., 2021),
and critical peak pricing (CPP) (Chen et al., 2022a; Chen et al., 2022b).

o Energy demand: This class includes the EES on how the demand side
increases energy efficiency, e.g., power down (Dai et al., 2013, Wang
et al., 2020) and speed-scaling mechanism (Wu and Che, 2020, Pan
et al., 2022).

Concerning energy supply EES, two common strategies are consid-
ered, namely TOU tariffs and CPP. TOU tariffs refer that electricity
prices fluctuate over a day according to temporal electricity demand.
CPP charges punitive electricity prices during periods of high demand.
TOU tariffs and CPP policy are often adopted jointly, providing us with
the opportunity to shift machine running time from on-peak hours (high
price) to low-peak hours (low price), which aims to save energy cost
(Shrouf et al., 2014, Gahm et al., 2016, Ding et al., 2021).

With respect to energy demand EES, power down strategy is
deployed in this paper. The power down strategy originated from one of
the most famous works on EES done by Mouzon et al. (2007). The power
down mechanism shuts down idle machines and resets them until
needed, which can save a significant amount of energy without pro-
longing TT. Afterward, Mouzon and Yildirim (2008) extended this study
by applying the concept of break-even duration, where the machine
would be shut down when idle time exceeded the break-even duration.
In this study, we jointly consider energy supply and energy demand EES
to decrease both TEC and CTC.

The two-stage HFS has been proven an NP-hard problem even when
the first stage has two identical parallel machines and the second stage
has only one machine (Gupta, 1988). Consequently, the considered
EEHFSP with multiple EES and objectives is NP-hard in a strong sense.
Most of the research in the literature, therefore, adopts metaheuristics
such as genetic algorithm (GA), tabu search (TS), and variable neigh-
borhood search (VNS) to solve the problem (Chen et al., 2020a; Chen
et al., 2020b, Zhao et al., 2021a).

Metaheuristics improve the solution in an iterative way using local
search operators while at the same time trying to escape from local
optima (Gendreau and Potvin, 2019). In fact, a single operator may
perform differently during the search process. The reason lies in the fact
that the search space of a combinatorial optimization problem is non-
stationary and includes different search regions with dissimilar char-
acteristics. Different operators specialize in different regions (Li et al.,
2013). Therefore, researchers may deploy multiple local search opera-
tors to enhance the search robustness of metaheuristics (Karimi-
Mamaghan et al., 2022, 2023; Zhao et al., 2017; Oztop et al., 2020).

A major concern naturally comes into mind when designing such a
metaheuristic: which order should the search operator be deployed to
guide the metaheuristic to global optima efficiently? Two fashions are
commonly used: offline and online. In offline operator selection, oper-
ators are deployed by sequence at random without any knowledge from
the former search. In contrast, online operator selection selects the most
appropriate operators dynamically during the search process.

Adaptive operator selection (AOS) is one kind of online operator se-
lection using extracted knowledge from the search environment (Li
et al., 2013). The main steps of AOS are as follows: reward computation,
credit assignment, operator selection and move acceptance. AOS eval-
uates the reward based on solution improvements after applying an
operator and then assigns the credit to the operator to update knowl-
edge. Depending on the learned experience, AOS selects the next oper-
ator and decides whether to accept a move or not. Sometimes AOS and
hyper-heuristics can be used interchangeably. Refer to the review paper
for details (Karimi-Mamaghan et al., 2022).

In recent years, there has been a growing research interest in inte-
grating machine learning techniques into metaheuristics, enabling
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metaheuristics to extract knowledge from data (Bengio et al., 2021;
Karimi-Mamaghan et al., 2020, 2022, 2023; Talbi, 2021). Particularly,
reinforcement learning (RL) as a subfield of machine learning, specializes
in interacting over time with its environment to achieve a goal (Richard
and Andrew, 2019). The property of RL makes it just suitable to drive
AOS select operators at each step, which is rising in heat (Cai et al.,
2021; Durgut et al., 2021; Karimi-Mamaghan et al., 2023; Richard and
Andrew, 2019).

To solve the EEHFSP problem, this paper proposes a novel RL-driven
hybrid meta-heuristic. We adopted Q-learning, a famous RL algorithm, to
learn the optimal behavior of operators. The Q-learning-driven GVNS
(QVNS) realizes AOS in the EEHFSP to select appropriate local search
operators during iteration. Then QVNS is embedded into Non-
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002)
to form a new algorithm called QVNS-driven NSGA-II (QVNS-NSGA-II).
To the best of our knowledge, this is among the first research that
combines metaheuristics with RL to solve the EEHFSP.

The main contributions of this paper are summarized.

e We presented a novel multi-objective mixed-integer nonlinear pro-
gramming (MINLP) model for EEHFSP to minimize time-related,
environment-related objectives (i.e., TT, TEC, and CTC). The model
considers both energy supply side EES (TOU tariffs and CPP) and
energy demand side EES (power down mechanism) with uniform
parallel machines. The properties and complexity of the presented
model are analyzed.

e The Q-learning is incorporated into GVNS to perform AOS during the
search, enabling the agent to select the appropriate operator adap-
tively in the shaking and local search phases. The algorithm
complexity is also given. In QVNS, the Q-learning features a
specialized reward function and Pareto solution move acceptance for
EEHFSP. GVNS considers sets of problem-oriented neighborhood
structures and local search operators.

e The proposed QVNS-NSGA-II is among the first RL-served meta-
heuristics for EEHFSP. QVNS is performed during each iteration to
improve the incumbent solution for higher diversity and quality.
Experimental results demonstrate the superiority of our algorithm in
terms of quality, diversity, and computational efficiency. A sensi-
tivity analysis is also conducted to yield managerial insights in
selecting preferable Pareto solutions.

The remainder of this paper is organized as follows. In Section 2,
works related to EEHFSP and RL-assisted metaheuristics are briefly
reviewed. The detailed problem formulation and mathematical model
are described in Section 3. Section 4 introduces the background of GVNS
and Q-learning. Section 5 presents the whole picture of the proposed
QVNS-NSGA-II. Then the proposed algorithm is numerically compared
to the classical NSGA-II as well as two state-of-the-art algorithms in
Section 6. Finally, Section 7 concludes the paper and discusses the
possible directions of future research.

2. Literature review

Over the past three decades, extensive effort has been devoted to the
flow shop scheduling problem (FSP). Refer to the comprehensive re-
views given by Yenisey and Yagmahan (2014), and Alejandro Rossit
et al. (2018). FSP can be roughly classified into three main categories:
permutation FSP (PFSP), hybrid FSP (HFSP), and distributed FSP
(DFSP). As the concern for environmental protection grows, the research
on energy-efficient FSP has been increasing significantly since 2013
(Gao et al., 2020, Li and Wang, 2022). From a methodological
perspective, researchers are carrying out extensive work on efficient
metaheuristics. The integration of machine learning knowledge into
metaheuristics has attracted enormous attention recently (Bengio et al.,
2021; Karimi-Mamaghan et al., 2022).

In what follows, we mainly review two streams of works highly
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related to our research: (1) Energy-efficient flow shop scheduling, and
(2) RL-based metaheuristics. At last, we summarize the research gaps in
this paper.

2.1. Energy-efficient flow shop scheduling

In this section, we mainly focus on problem characteristics including
production environment, energy-efficient strategies, and objectives.
Table 1 shows the classification of research on energy-efficient FSP
(EEFSP) within the last ten years.

Quite a few EEFSP studies concentrated on PFSP and DFSP, in which
especially the number of papers related to DFSP is increasing in recent
three years. HFSP is an extension of PFSP, with the advantage of pro-
duction flexibility (Lei and Zheng, 2017). HFSP can also act as compo-
nents of DFSP, for instance, Lu et al. (2022) investigated a distributed
HFSP to minimize the C,x and TEC.

Aiming to EEFSP, most research jointly considers production-related
objective Cpax and energy-related objective TEC. TT plays a key role in
improving customer satisfaction, however, few papers incorporate the
objective of minimizing TT. Besides, green objectives such as total car-
bon emission (TCE), noise, and pollution are still hardly incorporated
into EEFSP (Li and Wang, 2022). Dong and Ye (2022) optimized TCE and
TEC under TOU prices on a distributed two-stage reentrant HFSP. Their
study neglected the importance of production-related indicators.

Ghorbani Saber and Ranjbar (2022) consider the minimization of TT
and TCE in PFSP. They developed a multi-objective decomposition-
based heuristic algorithm, as well as a multi-objective VNS algorithm to
solve the problem. As far as we are concerned, CTC has never been
considered in EFFSP for the purpose of green scheduling. No paper in-
vestigates an EEHFSP problem to minimize TT, TEC and CTC
simultaneously.

Furthermore, most research only takes one-side energy-efficient
strategy, for example, either power down (energy demand), speed-
scaling (energy demand), or TOU (energy supply) mechanisms.

With respect to energy demand strategies, many studies extensively
investigated speed-scaling strategy in energy demand. The speed-scaling
strategy assumes machines can adjust among discrete speeds dynami-
cally during processing, so as to save energy costs. Ding et al. (2016)
adopted speed-scaling strategy to reduce TCE of a PFSP and proposed a
modified NEH heuristic and an iterated greedy algorithm to solve the
model. Goli et al. (2023) first presented a novel metaheuristic to opti-
mize a non-permutation FSP and lot-sizing. This model aimed to
determine the lot size and determine each machine’s speed to minimize
Cmax and TEC simultaneously. Wang et al. (2023a) presented an energy-
efficient fuzzy HFSP model using speed-scaling strategy and employed
extended NSGA-II to minimize fuzzy Cpax and TEC.

Compared to speed-scaling strategy, less research focused on power
down strategy, which shuts down idle machines to save energy con-
sumption. Based on power down strategy, Dai et al. (2013) proposed a
novel mathematical model for EEHFSP. An improved genetic-simulated
annealing algorithm was adopted to make a compromise between Cpax
and TEC. Lu et al. (2022) extended the study of power down strategy
into DFSP. They addressed the problem by designing a Pareto-based
multi-objective hybrid iterated greedy algorithm.

Regarding energy supply strategy, Luo et al. (2013) are among the
first to investigate EEHFSP considering uniform parallel machine and
TOU prices. They introduced a new ant colony optimization to solve the
problem. Ho et al. (2022) proposed a new MIP for two-machine PFSP
with TOU electricity prices to minimize TEC. They employed an exact
method by Logic-based Benders decomposition to solve the problem,
and test results prove the method’s superiority. An et al. (2023) dis-
cussed a complex maintenance planning and production scheduling
problem for serial-parallel manufacturing systems under TOU tariffs. To
solve the problem, they developed an energy-efficient two-stage main-
tenance strategy to minimize the sum of the TEC and TT.

It is found that the integration of both energy demand strategies and
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Table 1
Classification of the research on EEFSP.
Production Energy-efficient strategies
Environment
Ref. P H/F D TOU  Uniform  On-off Speed  Objectives Algorithm Local search Selection
Dai et al. (2013) v v Crmax, TEC GA, SA 2pX0 -
Luo et al. (2013) v v v Cmax, TEC ACO PT -
Ding et al. (2016) v v Cmax, TCE NEH, IG NEH Insr, DC -
Chen et al. (2019) v v Cmax, TEC COA Swabp, Insr, SA,SD AOS
Chen et al. (2020b) v v Cmax, TEC NSGA-II 2pXO0, 0XO, RA Random
Oztop et al. (2020) v - - - - Cimax IG, VNS, QL Insr, Swap Sequential
Wu and Che (2020) v v Cmax, TEC VNS Swap, Insr AOS
Wang et al. (2020) v v v Cmax, TEC CH, TS, ACO BS, PT -
Cui and Lu (2021) v v v TEC GA, DP 0OXO, Inv Random
Cheng et al. (2022) v v Cmax, TEC QL, HH GW, Jaya, 2pXO AOS
Dong and Ye (2022) v v Cmax, TCE, SSA, NSGA-III OXO, RA, Insr Random
TEC
Li et al. (2022) v - - - - Cmaxs ABC, QL, NEH Swap, 2Swap, B-Insr, AOS
DC, Insr-Inv
Lu et al. (2022) v v Cmax> TEC MOHIG 0XO, Swap, Insr, DC Random
Pan et al. (2022) v v Cmaxs TEC Jaya OXO, Insr Sequential
Shao et al. (2022) v v v TT, TEC VNS G-Insr, G-Swap Sequential
Zhao et al. (2021b) v - - - - Cmax CWWO, VNS Prop, DC AOS
Zhao et al. (2021a) v v Cmaxs TEC TS, ILS Insr, BS Sequential
Zhao et al. (2022a) v v TT, TEC QL, HH Insr, Swap, SA, SD AOS
Zhao et al. (2022b) v v TT, TEC, RAB QL, BSO Insr, Swap AOS
An et al. (2023) v v v TT, TEC GA 0XO, 2pX0O Random
Cai et al. (2023) v - - - - Cmax SFLA, QL Swap, Insr, OXO AOS
Goli et al. (2023) Ve v Cmax, TEC ALO, KA RW, Swirl, Move Sequential
MOKSEO
Karimi-Mamaghan et al. v - - - - Cmax I1G, QL DC, Insr AOS
(2023)
Wang et al. (2023c) v v Cmax> TEC, FA, VNS, NSGA- 0XO, PBX, 2pX0O, Swap, Sequential
STD 1L, IG Insr, Inv
Wang et al. (2023a) v v Crmax, TEC NSGA-II 2pXO0, Swap Sequential
Yue et al. (2023) v - - - - TT, TEC HPSMO Insr, PPX Sequential
This study v v v v TT, TEC, CTC ~ QVNS-NSGA-II P-DC AOS

\/ means the factor considered in the article, and “-” means not.

* Non-permutation flow shop that allows changes in the job order on different machines, which is a generalization of the permutation flow shop.

Notations:

Production Environment: P: Permutation flow shop, H/F: Hybrid/Flexible flow shop, D: Distributed flow shop.

Energy-efficient strategies: TOU: Time of use electricity prices, Uniform: uniform parallel machines, On-off: power down, Speed: Speed-scaling.

Objectives: Cpax: makespan, TEC: Total Energy Consumption, TCE: Total Carbon Emission, TT: Total Tardiness, STD: Total Starting Time Deviation, RAB: Resource
Allocation Balancing.

Local search: XO: Crossover, 1(2)pXO: 1(2)-point XO, PT: Pheromone Trails, Insr: Insertion, NEH Insr: NEH heuristic Insr, SA: Accelerate the speed of an operation, SD:
Decelerate the speed of an operation, OXO: Order XO, Inv: Inverse, RA: Rearrange, BS: Block shift, B-Insr: Bind Insr, DC: Destruction-Construction, GW: Grey Wolf
Optimization, G-Insr: Greedy Insr, G-Swap: Greedy Swap, Prop: Propagation RW: Random Walk, PPX: Precedence Preservative XO, P-DC: Pareto-based DC,
Algorithm: GA: Genetic Algorithm, SA: Simulated Annealing, ACO: Ant Colony Optimization, NEH: NEH heuristic, IG: Iterated Greedy, COA: Collaborative Optimi-
zation Algorithm, NSGA-II: The Non-dominated Sorting GA, VNS: Variable Neighborhood Search, QL: Q-learning, CH: Constructive Heuristic, TS: Tabu Search, DP:
Dynamic Programming, HH: Hyper-heuristic, SSA: Salp Swarm Algorithm, ABC: Artificial Bee Colony Algorithm, MOHIG: Multi-objective Hybrid IG, CWWO:
Cooperative Water Wave Optimization, ILS: Iterated local search, BSO: Brain Storm Optimization Idea, SFLA: Shuffled Frog-leaping Algorithm, ALO: Ant Lion
Optimizer, KA: Keshtel Algorithm, MOKSEO: Multi-objective Keshtel and Social Engineering Optimizer, FA: Firefly Algorithm, HPSMO: Hybrid Pareto Spider Monkey
Optimization.

Selection: AOS: Adaptive operator selection.

energy supply strategies has hardly been investigated. Wang et al. metaheuristics considering multiple objectives simultaneously in a
(2020) derived an EEHFSP from a real-world glass factory, in which Pareto front, such as NSGA-II, artificial bee colony, and ant colony
parallel machines with eligibility are at stage 1 and a batch machine is at optimization. Lu et al. (2022) designed a Pareto-based hybrid iterated
stage 2. They integrated power down and TOU strategies to save energy greedy algorithm for energy-efficient DFSP, wherein one cooperative
consumption, however, they did not extend this research into k-stage initialization strategy and one knowledge-based multi-objective local
EEHFSP with uniform parallel machines. The studied problem in our search method were invented to boost the algorithm performance. Pan
study is a generalization of their work. So far, there is no literature on et al. (2022) employed a newly developed metaheuristic Jaya to solve
solving EEHFSP with k-stage uniform parallel machines using TOU DFSP. The Jaya algorithm is a Pareto-based EA regarded as easy to
prices and power down mechanism. execute because it has only two parameters. Wang et al. (2023c) have
incorporated a fast non-dominated sorting method and elite preserving
2.2. Rl-assisted metaheuristics strategy from NSGA-II into an EA called firefly algorithm to solve an
EEHFSP.

Due to the NP-hard complexity of EEFSP (Garey et al., 1976; Gupta, The aforementioned metaheuristics are proven to be effective to find
1988), swarm intelligence and evolutionary algorithms (EA) are usually Pareto solutions in specific problem settings. A well-problem-tailored
employed to solve the problems. Table 1 also presented a methodolog- metaheuristic can find its niche given a problem set. Among the
ical classification of EFFSP. widely employed metaheuristics for EEHFSP, NSGA-II has been proven

It is demonstrated that most papers have employed Pareto-based to be one of the most promising EAs applied to this problem so far (Chen
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et al., 2020b,a; Ding et al., 2021; Wang et al., 2023c,a). Therefore, we
choose NSGA-II as the algorithm framework to develop a more efficient
metaheuristic for EEHFSP.

In recent years, machine learning techniques attract increasing
attention in solving optimization problems. Wang et al. (2023b) devel-
oped a deep reinforcement learning method, LSTM-TD(0) to directly
solve non-permutation FSP with the minimization of Cy,,x. The work of
Wang et al. (2023b) is referred to as “End to end learning” which outputs
solutions directly from instances. However, only using machine learning
cannot be suitable for complex combinatorial optimization problems,
for example, EEHFSP with multiple objectives (Bengio et al., 2021).

Most works applied RL techniques in their metaheuristics in the
aspect of parameter setting. Chen et al. (2020a) designed self-learning
GA based on Q-learning and SARSA to choose key parameters auto-
matically, i.e., crossover rate and mutation rate. The proposed algorithm
is applied to a flexible job shop taking Cpax as the objective. Oztop et al.
(2020) proposed a general variable neighborhood search (GVNS)
through Q-learning to solve the no-idle PFSP with the minimization of
Cmax- The Q-learning was adopted to adjust the parameters of the al-
gorithm dynamically, for example, the parameter of the acceptance
criterion.

Some papers have adopted RL techniques in FSP for AOS. Traditional
AOS employs simple added-value methods without any reinforcement
learning knowledge, such as Chen et al. (2019) and Wu and Che (2020).
Zhao et al. (2021) used reinforcement learning techniques to learn AOS
in a distributed assembly no-idle FSP. A propagation operator based on
the Q-learning and VNS is introduced to a newly developed EA, namely
cooperative water wave optimization. Cai et al. (2023) defined a novel
Q-learning process to help shuffled frog-leaping algorithm select a local
search operator dynamically in a DFSP with the objective of Cpax. Kar-
imi-Mamaghan et al. (2023) integrated a Q-learning into a perturbation
mechanism, boosting an IG algorithm to solve a PFSP with Cpa. Li et al.
(2022) proposed an improved artificial bee colony algorithm with Q-
learning for solving PFSP with minimizing the Cpax.

The above work proved that integrating RL-powered AOS with
metaheuristics is promising to improve exploration ability. However,
the major literature focused on AOS in single-objective FSP, ignoring the
technical problems incurred by multi-objective optimization, e.g., how
to define reward function in the Q-learning process and how to compare
two Pareto solutions. In this regard, Cheng et al. (2022) formed a multi-
objective Q-learning-based hyper-heuristic with bi-criteria to select
three low-level heuristics, i.e., Grew wolf operator, Jaya operator, and
GA operator. Our work differs from theirs in selecting local search op-
erators rather than complete metaheuristics.

To the best of our knowledge, among studies with operator selection,
no one has studied RL-driven AOS in EEHFSP. Thus, designing an
effective RL-driven metaheuristic in multi-objective EEHFSP is a gap
need to fill in.

2.3. Research gaps
To sum up, we can identify the research gaps as follows:

Most research on EEHFSP focused on the minimization of Cp,ax and
TEC. Limited literature considers the combination of CTC, TT and
TEC.

The literature considering both the supply side and demand side EES
is scarce. No study generally integrates TOU price, CPP and power
down strategy on a k-stage EEHFSP with uniform parallel machines.
The majority of previous metaheuristics for EEHFSPs extract no
knowledge during the search, resulting in blind operator selection.
The AOS driven by RL algorithms is hardly investigated in EEHFSP.
Most literature on AOS focused on single-objective optimization
problems, ignoring the technical problems incurred by multi-
objective optimization. Q-learning- and GVNS-driven multi-objec-
tive metaheuristics for EEHFSP have seldom been studied yet.
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3. Problem formulation and modeling
3.1. Problem formulation

Consider an HFS consisting of s stages. Each stage k € {1,...,m} hasa
set of uniform parallel machines M. It is assumed that machines in
parallel at each stage run at different speeds. The speed of machine my is
V- The operation oj requires pj units of time to be processed. If the
operation o is processed on machine my, it actually requires pj /v time
units to be finished (Chen et al., 2022a; Chen et al., 2022b).

There are a set of jobs J to be scheduled. Each job j € J needs to go
through all stages. In each stage k € {1, ...,m}, its operation oy € {ojh .
- ojm} is processed. An operation oy can be processed on any machine
my € My at stage k € {1,...,m}.

Each jobj € J has its due date d;. The completion time of the jobj € J
at the stage k is denoted as Cjx. When a job is completed later than its due
date d;, tardiness T; = Cj, —d; occurs. The total tardiness of jobs TT =
Yjey(max{0, Cim — d;} ).

The basic assumptions of HFSP are included:

e The release time of all jobs is zero, and all machines and jobs are
available at time zero

Each job can be processed at one machine at a time.

Each machine can process at most one job at a time.

The job cannot be interrupted once it begins, namely, preemption is
not allowed

In addition to basic assumptions, the additional assumptions are
given as follows:

e All machines have four states: processing, standby, reset, and shut-
down, and each state corresponds to different energy consumption.
Machines can be turned down or kept idle after completing a job.

e Each uniform machine has its processing speed. Higher speed incurs
higher energy consumption.

Energy consumption is considered for machining jobs. Three types of
energy consumption are considered as follows:

e The basic process energy consumed per unit time (i.e., power) for
uniform machines at stage k is pe,. Based on the power conversion
factor Ay introduced by Mansouri et al. (2016), let each vy corre-
spond to a 1. Thus, the actual process power of machine my, is 1xpe,.
Usually, a fast machine has higher power than a slow one.

e When a machine stays standby state, the standby energy is incurred,

see Fig. 3. The standby power of machine my is denoted by se;.

In order to reduce the standby energy consumption, power down

mechanism is introduced. That means a machine can be turned off to

save energy when it is idle. But when turning the machine back on, a

reset energy will be generated. The reset time is t.s: and the reset

A A
Power of my, | — — — - @) Electricity Price
| A (CNY/MWh)
L __ .
Aw<per Jobl Job2
reijr o
Seir
Standby I Process
1 1
b Time (7)
treset

Fig. 3. Three types of machine power.
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power of machine my is given as; so the reset energy can be easily
obtained by re; trs: (Ding et al., 2021; Luo et al., 2013).

TOU mechanism is also considered that the electricity price of
different periods varies. Let f(t) denote the electricity price at period
te N, where t is an integer. Thus, the total energy cost TEC =
> eenf (02 kes D iem, Eix- Note that CPP mechanism is defined in f(t),
which charges critical pricing for energy demand peaks. For simplicity,
Ej, is defined as the power consumption of each machine at time t € N,
which is determined by the three types of power, i.e., process power,
standby power, and reset power.

In addition, in order to take environmental protection into consid-
eration, carbon trading cost CTC is considered. Assume that a factory has
a carbon emission allowance denoted by EA. Once the carbon emission
exceeds the allowance, the factory needs to pay for additional carbon
emission rights in the carbon emission trading market. The carbon
emission coefficient y converts electricity consumption into carbon
= [ renDokes iem, (Ehe x p) — EA] X Cp,
where C, is the price of carbon emissions per ton in the carbon trading
market. Note that CTC and TEC are somewhat related, but are not
necessarily proportional. CTC is directly related to energy consumption;
however, TEC is not only affected by energy consumption but also by
TOU.

The goal of the MOE-HFS problem is to minimize three objectives,
which are:

emissions. We can obtain CTC

e Total tardiness TT,
e Total energy cost TEC,
e Carbon trading cost CTC.

The MOE-HFS problem does not only determine how to batch jobs
onto machines at each stage and when to process, but also determines
machine states at each period. According to a|f|y notation, it can be
summarized as HFs(Qmi, .., Qm)TOU,on — off|{TT,CTC, TEC}.
Thereby, HFs denotes an HFS with s production stages; Q stands for
uniform machines with different speeds (Lee and Loong, 2019).

3.2. Mathematical modeling

To formally model the problem, the notation is defined as follows in
Table 2:

Min
T = " (max{0,Cjs — d;} ) 8]
jel
TEC =Y f(0> > E; (@)
teN keS ieMj,

cre = |33 (Ey x p) —EA| x G, 3)

1N keS ieMy

Subject to
> DD dySLieN @
keS ieMy jeJ
SN by=1jelkes 5)
1EN iEMj,
N by =lieMukeS (6)
teN
by =ay;,i €My, jeJkES )
by zdy —dy' i€ M,jel keSt>1 (©)]
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Table 2
The notation.
Sets
J Set of jobs, jh e J = {1,...,n}
S Set of stages, k € S = {1,...,m}
My Set of machines at the stagek € S, i€ M, = {1,..., Lk}
N Set of periods,t € N
Parameters
d; Due time of the job j,j € J
Dik Processing time of operation oy (job j at the stage k)
Vik The processing speed of machine i at stage k, e.g., Vik € {V1,V2,v3}
for three speed modes
Aik The conversion factor for processing speed vi
Dex The basic power of machines at the stage k
rejx Reset energy consumed per unit time for machine my
Seik Standby energy consumed per unit time for machine my,
f(t) Energy price in period t (CNY/MWh)
treser Time consumed to turn on and turn off the machine
B A very large positive number
Cp Price of carbon emissions per ton in the carbon trading market
EA Emission allowances
u Carbon emission per ton of electricity consumed (tCO,/MWh)
Decision
Variables
aik]. 1 if the operation oy is processed on the machine my in time t, and
0 otherwise
bfkj 1 if operation oj begins on the machine my in time t, and
0 otherwise
Xikih 1 if job j immediately precedes job h on the machine my,
otherwise 0, j # h, j,h € J
X 1 if the machine my is processing or idle, otherwise 0 (see
Table 3)
e 1 if the machine my is in reset or idle, otherwise 0 (see Table 3)
Ef Energy consumption of machine my in the period t
Sik Start time of job j at the stage k
Cix Completion time of job j at the stage k
Cjs Completion time of job j at last stage s
T; Tardiness time of job j
D dy = by x i,i eEM,jelkes ©)
1eN 1eN Vi
Xy =Y dyi €M keS,teN 10
jel
Ef = xt (1= yi)sew + ¥y (1 — xi ) reg + Eaﬁk/i,-kpek, ieM,keSteN
jel
an
> dup =D b i €M j#hjel 12)
heJu{0} teN
Z Xign = Zbﬁ'km i €Myj#hhel 13)
jeJu{o} teN

ieMy \ teN

,.k_Z<Zb,ijt )i €M,k €St €N as

/kz<2byk ( pfk—1>),ieM,{,kes,zezv (15)
ieM; \ 1eN Vik

Ci<Sjks1yj €J, k€S (16)
Chk———C,k/B(x,A,h 1),j#hicM,keSjeJu{0lhes QA7)
Ziagn €{0, 1}, j # hi€ M, ke S,jeJU{0},hel (18)
ay, €{0,1},i e My, jeJ,keS 19
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X,V €{0,1},i e My, k€ S,tEN (20)

Eq. (1-3) are three objective functions to minimize, namely TT, TEC
and CTC. Constraint (4) ensures that only one job is assigned to a ma-
chine at a time. Constraint (5) enforces that each operation
o € {01, ..,0m}, j €J, k €8S, has to be processed and should not be
interrupted once it begins. In other words, an operation is started exactly
once.

It is worth mentioning that for modeling, we define a dummy job
indexed by 0 with no processing time. Eq. (6) ensures that the dummy
job is assigned to each machine. Constraints (7-9) define the connections
between indicators afkj and bfkj. It is obvious that if o is produced by
machine my att =1, then it must begin at that time. Eq. (8) ensures that
when aﬁkj changes, ble]. follows. Eq. (9) also defines the actual processing
time of an operation.

Eq. (10) establishes the connection among alej, x4 and y}. alej =1
only when xj, =1 and y} = 1. Constraint (11) defines the energy con-
sumption of machine my in the period t. Table 3 lists the states of a
machine defined by both xj, and y} . For example, when a machine is in
reset state in time t, xj; = 0, 5, = 1, and its corresponding power is rej.

Constraints (12-13) ensure that for a job, there should be only one
job immediately before it and one immediately after it on the same
machine. Constraints (14-15) define the start time and completion time
of an operation. Note that there exists a term for subtracting one time
unit because t begins at 1. Constraints (16-18) specify the connections
between start time and completion time. Constraint (16) imposes that
the next operation of a job cannot start until its previous operation has
been completed. Constraint (17) enforces that job h should start after
completing its preceding job j. Constraints (18-20) define all binary
decision variables.

The proposed model is a multi-objective mixed integer program.
Since there is no best solution for a multi-objective optimization prob-
lem (MOP), Pareto-optimal solutions are used. A set of Pareto-optimal
solutions is called non-dominated solutions or Pareto-optimal front.
The solutions in this set cannot dominate each other, in other words,
there is no solution that is better than others in all objectives. Therefore,
this paper attempts to find Pareto-optimal solutions to the proposed
model.

3.3. Analysis of EEHFSP properties

Much research has proved that TT and TEC are mutually contradic-
tory (Shao et al., 2022; Zhao et al., 2022b), however, the relationship
between TEC and CTC is not clear. Here we give properties of the pro-
posed EEHFSP to better indicate the conflict between TEC and CTC.

Property 1. For a TOU strategy, there exist two solutions with the same
energy consumption whose CTCs are the same but whose TECs are different.

Proof. Here we give a simple example that satisfies this property.
CTC is proportional to energy consumption. To better illustrate, the
calculation of CTC is substituted by energy consumption.

InFig. 4@) TEC =6x2 +5%x5+4x2 =45,CTC = (2+5+2) x
1 =9. In Fig. 4(b) TEC = 6%x 54+ 5%x 2+ 4x 2 = 48, CTC =
(5424 2) x 1 =9.Itcan be seen that the CTCs are the same, while TEC
fluctuates with TOU tariffs.

Property 2. For a TOU strategy, there exist conflicts between TEC and

Table 3
The states of a machine.
X Y State Power
1 1 Processing Peik
1 0 Standby seix
0 1 Reset reix
0 0 Shutdown 0
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CTC.

In Fig. 5(a) TEC =6 x5 +5x 2 + 4 x 2 =48, CTC = (5+ 2+ 2) x
1=9.1InFig. 5((b) TEC=6x 2+ 5x 2+ 4x 6 = 46, CTC =
(2+2+6)x1 =10.Itis observed that for two solutions the decrease of
TEC incurs the increase of CTC.

The above properties of the proposed EEHFSP justify the necessity of
considering both TEC and CTC. TEC reflects the energy cost while CTC
reflects the carbon emission. The change of TEC is not always consistent
with that of CTC.

The EEHFSP model can be denoted as HFs(Qm, ..,
Qmy)|TOU, on — off|{TT,CTC, TEC}. Gupta (1988) has proved that the
HFSP with two stages with the makespan objective is NP-hard when the
first stage has two identical parallel machines and the second stage has
only one machine. Based on the complexity hierarchies for scheduling
problems (Pinedo, 2016), the HFSP with total tardiness objective can be
deduced to be NP-hard. Considering our problem contains k stages with
uniform parallel machines, and we minimize three objectives concur-
rently along with two practical EES, i.e., TOU and power down, the
proposed EEHFSP is an NP-hard problem.

4. Background of GVNS and Q-learning
4.1. GVNs

VNS is a metaheuristic that changes the neighborhood structures
systematically to escape from the local optima. VNS jumps from the
current solution to a new one only if a solution with higher quality has
been found (Mladenovic and Hansen, 1997). The main loop includes a
shaking procedure to escape from the local optimum, a local search to
improve the solution, a neighborhood change procedure, and an
acceptance procedure.

The VNS can easily be changed to other variants depending on the
search depth and step length of neighborhood change. In our study, we
refer to the general VNS (GVNS) wherein variable neighborhood descent
(VND) is integrated into the local search procedure. VND adopts mul-
tiple local search operators in a sequential or nested fashion to improve
the solution (Hansen et al., 2010; Shao et al., 2022). The detailed pro-
cedure is shown in Algorithm 1.

Algorithm 1: General variable neighborhood search

1: Input: Set of shaking neighborhood structures Ni(k = 1,2, ...,kmax), solution x,
set of local search operators N/'(I = 1,2, ..., lnax)

2: Output: an improved solution x

3: Setk =1

4: While k < kpax

5: Generate a solution x" at random from the k-th neighborhood of x (X' € Ni(x))
6: # Shaking procedure

7: Generate improved solution x using VND (x & N'l (x),1 =1,2, ..., lnax)

8: # Local search procedure (Hansen and Mladenovic, 2001)

9: If X is better than the incumbent x then

10: Setx = x'
11: Else

12: Setk =k +1
13: End if

14: End while

4.2. Q-learning

Q-learning, first developed by Watkins (1989), is a model-free and
off-policy RL algorithm based on temporal difference, which converges
to the optimum action-state value independent of the target policy being
followed. At each step, the agent perceives the state s of the environment
and chooses the best action a from a set of actions based on learning
knowledge. Then the environment would move to the next state s’ while
at the same time gives feedback called reward. The agent tries to
maximize the expected cumulative reward through trial-and-error in-
teractions with the environment over time. In Q-learning, this expected
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Power ofm,-k“_ 6 £(1)

Electricity Price
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(b) TEC=48 , CTC=9

Fig. 4. Same CTCs and different TECs.

A A
Power of my | _ § - 1) Electricity Price
L5
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L4
2
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0 1 2 3
(a) TEC=48 , CTC=9

Powerofm,-k“_ 6 766 1l

Electricity Price

0 1 2 3
(b) TEC=46 , CTC=10

Fig. 5. TEC and CTC change in opposite directions.

cumulative reward of an action-state pair (s,a) € S x A is estimated by
action-state value Q(s,a) € R, representing the learned experience.

List all the actions in rows and states in columns, fill in each entry
with Q(s, a) related to (s, a), then we can get the brain of Q-learning, Q-
table. The initial Q-table is a zero-value matrix as shown in Table 4. The
agent will explore from state to state until the stop condition is satisfied.
Each exploration is called an episode.

And the updating value of Q(s, a) is shown as below (Watkins, 1989):

Q(s,a)<Q(s,a) + a|r + ymaxQ(s, d’) — Q(s, a) @1

Where s, = s is the current state, a is the action performed, s’ is the
next state after a is performed, and d' is the next action in state s’
a(0<a < 1) is the learning rate controlling the ratio of accepted new
information. r is the reward after performing action a, and it is calcu-
lated by the reward function. y(0<y<1) is the discount factor deter-
mining the influence of the future reward maxQ(s’, a’).

a

During each iteration, the agent encounters an exploration and
exploitation dilemma, where it needs to make a tradeoff between
selecting the action with the maximum Q value so far, and giving a
chance to execute other actions. Many selection methods are proposed
(Karimi-Mamaghan et al., 2022), in which e-greedy policy make a good
balance using parameter ¢. The detailed procedure is:

Table 4

The initial Q-table.
States Actions

a; az as as

$1 0 0 0 0
So 0 0 0 0
S3 0 0 0 0
S5 0 0 0 0

any one, with probability &
A(s) = maxQ(s', '), with probability 1 - & (22)

With the higher ¢, the agent intends to select random actions to
explore more in the search space, while the lower ¢ enhances the
exploitation capability by selecting the action with the best performance
so far.

5. The proposed QVNS-NSGA-II

It is well-known that the basic HFSPs are NP-Hard problems. Due to
the trade-off of problem complexity and computing efficiency, they are
widely solved by meta-heuristic algorithms, such as genetic algorithm,
and tabu search (Lee and Loong, 2019). In addition to the basic machine
allocation and job sequencing decisions in the HFSPs, the studied
EEHFSP needs to make decisions in turn on/off decisions of uniform
parallel machines under TOU considering multiple conflicting
objectives.

Thus, this paper proposes a Q-learning and GVNS driven NSGA-II.
The well-known NSGA-II is adopted as the multiple-objective optimi-
zation framework (Deb et al., 2002). We incorporate GVNS into the
NSGA-II framework to improve the neighborhood exploitation ability of
NSGA-II, which avoids being trapped into local optimum. Generally,
GVNS conducts neighborhood change in a random way. We further
propose a Q-learning driven GVNS, taking advantage of the learning
knowledge of Q-learning.

Most of the metaheuristics designed for EEHFSP consider neither EES
nor knowledge from the previous search. The main novelty of the pro-
posed QVNS-NSGA-II in this paper lies in the Q-learning boosted GVNS
based on search history and current search status. The Q-learning pro-
cess enables AOS in selecting neighborhood structures and local search
operators, which enhances the performance of QVNS-NSGA-IL
Furthermore, for the purpose of saving energy, an EES operator and
problem-specific local search operators are first combined. To the best of
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our knowledge, this paper is among the first to propose Q-learning and
GVNS driven NSGA-II for EEHFSP. The general flow chart of the pro-
posed QVNS-NSGA-II is given in Fig. 6.

5.1. The NSGA-II framework

5.1.1. Encoding and decoding

Encoding aims to transform the complete schedule into chromo-
somes. The encoding scheme for the EEHFSP problem needs to contain
the following decisions: 1) Allocate jobs to machines at each stage. 2)
Sequence the assigned jobs on each machine. 3) Determine turn on/off
of uniform parallel machines at each stage. Decoding is the inverse
process of encoding, which turns chromosomes into solutions. It also can
determine 1) The standby/reset state of idle machines, and 2) The start
time and completion time of jobs under TOU.

A native and direct way to encode the scheme includes multiple
segments of allocation, sequencing and turn-on/turn-off decisions for all
stages (Naderi et al., 2010, Yue et al., 2023). The complicated chro-
mosomes will incur high computational cost and poor algorithm

Generate initial population

top condition is
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performance (Ruiz and Maroto, 2006). For the sake of simplicity and
efficiency, we adopt an effective encoding scheme for the EEHFSP
problem. The encoding scheme only encodes job permutation z = {1, 2,
..,n} at the first stage and generates job permutation of later stages
using List scheduling (LS). LS is widely employed for decoding HFSP in
literature (Luo et al., 2013; Ruiz and Maroto, 2006; Yu et al., 2018).

LS leverages the earliest completion time (ECT) rule to dispatch jobs
onto machines. Note that in uniform parallel machine environment, ECT
will generate different schedules from the first available machine (FAM)
rule. Even if a job is allocated to the first available machine, its
completion time is likely to be larger than that of ECT rule because
uniform parallel machines run at different speeds (Naderi et al., 2010).

Under LS, every time jobs are taken one by one in the list and
assigned to a machine that can complete the job the earliest. This co-
incides with the minimization of TT. The job lists at later stages are
updated based on the completion times of jobs at the previous stage.

Let 7, denotes the job permutation at stage k and 7x(q) denotes the
job at position q in 7. To convert a chromosome into a feasible schedule,
the procedure of decoding is shown below.

satisfied?

Genetic operation

=

Power down strategy
and fitness calculation

=

Elite preservation

=

Select two individuals
from the Pareto front

=

Apply GVNS based on
trained Q-table

=

Generate new generation
population

Yes

Output the best solution

End

Q-table training

Q-learning driven GVNS

v

Choose the best solution

v

Calculate reward
and update Q-table

Fig. 6. Flow chart of the QVNS-NSGA-IL
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According to Naderi et al. (2010), the complexity of decoding is
calculated as O(n®Y_ I), where I is the number of parallel machines
at stage k.

Algorithm 2: LS decoding

: Input: The sequence of chromosome 7;

: Output: a feasible schedule

: Forq=1,2,..,ndo

: Assign the job 7;(q) to the machine that can complete the job the earliest

: End for

: Fork=2,..,mdo

: Sort the jobs in non-decreasing order of their completion time at the previous

NO U s WN -

stage k —1 and create a new sequence 7

8: Forg=1,2,...,ndo

9: Assign the job 7 (q) to the machine that can complete the job the earliest
10: End for

11: End for

5.1.2. Initialization

The NSGA-II begins with a population of initial individuals. The
quality of the initial population is of vital importance to the algorithm’s
performance. The NEH from Nawaz et al. (1983) was recognized as the
most successful heuristic in PFSP, and it is well adapted to HFSP (Naderi
et al.,, 2010). Inspired by the work of Pan et al. (2014), we design a
specific initialization method based on NEH for EEHFSP. We extend
NEH with different optimization objectives to generate initial in-
dividuals. This objective can be any one of TT, TEC and CTC. The
detailed procedure is presented in Algorithm 3.

Algorithm 3: NEH heuristic

: Input: A set of jobs n

: Output: a feasible schedule 7

: Generate a job sequence 7z by decreasing processing time of jobs

: Take the first two jobs and schedule them as 7 to minimize a certain objective
Fori=3,..,ndo

: Take job 7z (i) and insert it into all the possible places

: Update # the individual with the lowest objective value

: End for

NI A WN

The initialization includes two steps.

(1) Step 1: Yield three individuals based on Algorithm 2. One indi-
vidual use TT as the minimization objective of NEH, one indi-
vidual use TEC, and the remaining one uses CTC.

(2) Step 2: The rest individuals in the population are generated
randomly.

This approach provides the algorithm with three excellent in-
dividuals in different directions of search space, which avoids an early
convergence for the lack of diversity and slow convergence due to the
poor quality of random solutions (Pan et al., 2014).

In Algorithm 3, we have n(n+1)/2 —1 insertions in total (Nawaz
et al., 1983) and each insertion requires an evaluation. The complexity
of NEH heuristic is O (n®3_; ;I ), where > _;" ; Iy denotes the total number
of machines (Taillard, 1990).

Random cut point=2,5

Pl: 11,23 4 516 7

P2:
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5.1.3. Genetic operation

The genetic operation, namely crossover and mutation, act as the
backbone to explore solution space and escape from local optimum
during evolution. Considering the orderliness of the job sequence,
hereby, two-point order crossover (2p-OX0O) and swap sequence mutation
are employed.

The 2p-OXO has been widely employed in FSP, which proved to have
excellent performance (Lu et al., 2022; Pan et al., 2022). As shown in
Fig. 7, we used an improved variation of classic 2p-OXO, wherein the cut
points in both parents can be at different positions (Syswerda, 1991).

Swap mutation is a simple and effective mutation operator (Lu et al.,
2022; Zhao et al., 2021b). Hereby, we extend the swap segment from
one unit to a sequence. One of the offspring is randomly selected for
mutation (Fig. 8).

5.1.4. Elite preservation

Elite preservation strategy aims to retain the best individuals (i.e.,
elites). To evaluate the quality of multi-objective solutions, fast non-
dominated sorting (FNS) and crowding-distance calculation are adop-
ted in Appendix A. The detailed procedure refers to Deb et al. (2002).

The Pareto Dominance Operators for two solutions are defined. Op-
erators < and > mean “inferior to” and “superior to”, respectively. In
minimized optimization problems, the smaller the objective value, the
better the solution, and vice versa.

Definition 1. (Deb et al., 2002): If a solution x; Pareto dominates
another solution x,, it subjects to:

filx) < filx),Vj € {1,2,3,..} (23)

where f;(-) denote the objective function.
Based on this Pareto dominance operator, FNS assigns each solution

Random cut point=2,7
\ 4 \ 4

Pl: 1418 ,6 5 1 7 3|2

ol: 14 8|26 5 1 7 3

02:.6 5 1 7 3 4182

o3:12(6 5 1. 7 3 48

Fig. 8. Swap sequence mutation.

P2z 5116|7123 4

Random cut point=3,6

Fig. 7. Two-point order crossover.
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a rank representing the non-dominated level or Pareto fronts through
the comparison with other solutions. Each front is dominated by the
preceding one, for example, rank 1 is the best level (F;); rank 2 is the
second level (F5), and so on.

FNS designs two entities for each solution x, namely dominance
count and the set of solutions dominated by x, decreasing the compu-
tational complexity of the naive sorting approach from O(MN?®) to
O(MN?), where M denotes the number of objectives and N denotes the
number of individuals in a population.

Elite preservation first combines the parent population P; and
offspring population Q; to form P; U Q;. Next, all solutions in P, U Q; are
sorted into different Pareto fronts using FNS. The next population Py, is
filled with Fj, F5 to the last front F; in turn until the required population
number N is exceeded. To eliminate the number of individuals to exactly
N, the crowding-distance is introduced.

Crowding-distance indicates an estimate of the proximity or density
of solutions surrounding a particular solution in the population. A so-
lution with a higher crowding-distance suggests a less crowded neighbor
region, which is preferred for diversity preservation. To preserve just N
individuals for P.,1, we sort the solutions in F; using the Crowded-Com-
parison Operator <, and >,. These operators use both rank and
crowding-distance, which help to find a Pareto front with evenly
distributed solutions.

Definition 2. If a solution i is superior to j, it subjects to (Deb et al.,
2002):

i<nj : lf(imnk < jmnk )Or(imnk = jmnkandid[mmce > jdi:mnce) (24)

where ign and igiseance are the rank and crowding-distance of solution i,
respectively.
Here we present a demonstration of elite preservation in Fig. 9.

5.2. Power down strategy

In the original NSGA-II, LS decoding method considers only time-
related objective TT. In order to reduce both TEC and CTC, we resort
to power down mechanism to identify which idle machine should be
shut down.

We exemplify the power down mechanism with the Gantt charts in
Fig. 10. The green dashed box represents that the machine stays idle
between two jobs, while the grey dashed box represents the shutdown
and reset states of the machine.

As we can see, the power down mechanism turns down the machine
Mg, Maa, M3z, M3z for a while, reducing the electricity cost without
affecting TT. The mechanism determines whether it saves costs to shut

Fast non-dominated
sorting
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down the machine or keep idle. Meanwhile, the machine will not be shut
down if there is no available time to reset.

The power down mechanism dynamically adjusts the states of ma-
chines to reduce amounts of energy. We calculate the inter-arrival time
between the g-th job and the g + 1-th job on my using the following Eq.
(25). Let my denote the job sequence on machine my, and 7y (q) denotes
the job at position q in my.

Poy(q+1)k .
Ty (goutgr1) = Coulgrir — 7”‘:” K Copgprie Mk es (25)
ik

Eq. (26) defines the break-even time of each machine my.

.
TBy — ’eﬂ ieMukeS (26)
ik

TBjy of each machine my is the threshold value when reset energy
consumption equals standby energy consumption. When the condition
Tl (qow(q+1) > TBik is satisfied, the machine my should be shut down,
otherwise, it would consume more energy in standby state than in reset
state. Note that each machine my has its corresponding break-even time
TBi.

In order to implement this operator in QVNS-NSGA-II, a detailed
procedure is introduced. The time complexity of Algorithm 6 is O(nm)
since we have a total of nm operations.

Algorithm 6: Power down mechanism

1: Input: a feasible schedule 7

2: Output: an improved schedule 7 for energy saving

3: For each machine my do

4: For q < |ry| do# the g-th job on machine my is not the last one
5: If Thiggy (qym(q+1) =Max{ TBig, treser } then

Shut down the machine my when the job 7y (q) is finished; that means
for the time Cy, (g < t<Sx, (g+1)k —treser> let X§ = Oyj = 0. my is
supposed to turn on before the job 7y (g+1) begins; that means
Say+1)k —treser < t<S(is1pks let xg =0, y5 =1

6: Else

7: Keep the machine idle during inter-arrival time Tl (q)r, (g+1)»
8: Soxj =LYy = 0,Cryqk <t < Spy(gr1k

9: End if

10: End for

11: End for

5.3. Neighborhood structures and local search

As mentioned in Section 4.2, GVNS is composed of a shaking pro-
cedure and a local search procedure. Both procedures require a pre-
defined neighborhood structure set, for clarity, we use the term
“neighborhood structure” in the shaking procedure and “local search
operator” in the local search procedure, specifically.

Crowding-distance
calculation

I | eupunpuntet | R

T 1T

O

I

Rejected

Fig. 9. Elite preservation.
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Fig. 10. The effect of power down mechanism.

5.3.1. Neighborhood structure

In the shaking procedure, we consider a simple perturbation operator
as our neighborhood structure, namely Destruction-Construction (DC).
This operator is widely used in different metaheuristics such as Iterated
Greedy (Karimi-Mamaghan et al., 2023) and Adaptive Large Neighbor-
hood Search (Gendreau and Potvin, 2019). The original perturbation
operator includes two parts: the destruction phase which removes d jobs
randomly from job sequence z, and the construction phase to repair the
sequence using NEH heuristic (Ruiz and Stiitzle, 2007).

The number of jobs possible to be removed ranges from 1 to a limit
dmax, Which equals the number of possible neighborhood structures
(Karimi-Mamaghan et al., 2023). To avoid expensive evaluation cost
caused by iteration through all possible insertions, we adapt the con-
struction phase, using a first-improvement pivot rule (Naderi et al.,
2010). The inner search process will be terminated either an improved
solution is found or iterations are over a limit Max_iter.

The detailed pseudocode is shown as follows.

Algorithm 7: Pareto-based Destruction-Construction

1: Input: a feasible schedule 7, the number of removed jobs d € 1, dpax),
maximum iterations without improvement Max_iter.

: Output: an improved schedule 7’

: Define an empty set 7 to store the reinserted jobs, 7/ = 7

: Fori=1toddo

: Remove one job from 7’ and insert into 7z

: End for # Destruction phase

: Define the number of no improvement as n,, and setn, = 0,i=1
: For 1<i<d do

: Set n, = 0, improve = False

0: Whilen, < Max_iter do

: Insert job zg(i) into the 7’ randomly without repetition to get 7

= O 00N OU A WN

: If 7 < 7 then # Pareto-dominance operator
: Set 7/'=r, improve = True

: break # jump out of the while loop
: Else

: Setn, =n, +1

: End if

: End while

: If not improve then

: Insert job zz(i) into the #' randomly
. End if

: End for # Construction phase

5.3.2. Local search operator

Local search operators are critical to improving solutions, however,
general single-objective methods cannot be directly applied to the trade-
offs of TT, TEC and CTC. Insertion and pairwise swap are widely used in
the literature, and we modify the classic methods to problem-specific
ones. We adopt knowledge-based operators critical-path-based local
search (Zhao et al., 2022b) to avoid blind search while at the same time

12

further improve the solutions (Wang and Wang, 2016). Besides, two
effective local search operators, namely three-point permutation and
three-segment permutation, are selected (Asefi et al., 2014).

Fig. 11 illustrates an example of the critical path that is pointed out
by arrows.

Jobs in the critical path are defined as critical jobs J¢ (i.e., job 8, 3, 9,
1), and the other jobs are called non-critical jobs Jg. When the critical
path is identified, select one job from J; and one job from Jg, and the
following local search can be defined:

(1) Critical swap (CSwap): Swap the position of J; and Jg in =, see
Fig. 12(a).

(2) Critical insertion (CInsr): Insert J¢ to the position just after Jg in
7, see Fig. 12(b).

(3) Critical inverse (CInv): Inverse the jobs between J; and Jg, see
Fig. 13.

(4) Three-point permutation (TPP): Randomly choose three adjacent
genes at any position and perform all of the possible permuta-
tions, see Fig. 14(a). The best solution is then used.

(5) Three-segment permutation (TSP): Randomly choose two cut
points on the chromosome and split it into three distinct seg-
ments. Then perform permutations of the three segments, and
generate a total of 5 possible new permutations, see Fig. 14(b).
Finally, evaluate these solutions and select the best one.

Idle

—> Critical Path

Stage 3

Machine

Stage 2

Stage 1

30

20

Time (hour)

40

Fig. 11. Critical path.
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pi: 1 4 3 2 5

(b) Critical insertion

Fig. 12. Critical swap and Critical insertion.

Jc JR

Pl: 11213415

Ql: 1|43 |2]5

Fig. 13. Critical inverse.

5.4. Q-learning driven GVNS

In the proposed QVNS-NSGA-II algorithm, GVNS is driven by Q-

Pl: 11234 5

Q: |2|1]|3]|4 5

Q3 | 2|3 |14 5

Q4: 31|24 5

Qs: |3 214 5

learning to select the most appropriate neighborhood structure and local
search operator during the evolution process. The aforementioned Q-
learning process requires a set of states/actions and reward function.
Fig. 15 gives an overview of the QVNS.

5.4.1. States and actions

The set of states and actions define the environment that the agent
can perceive and take response to. Zhao et al. (2021) and Li et al. (2022)
set the individuals as states to construct Q-table, leading to a tremendous
state space that can hardly be explored by training. Different from theirs,
we set the neighborhood structures and local search operators as states.
Indeed, the state space is limited and effective to reflect a solution.

Since the shaking and local search procedures are separate, we use S1
and S2 to denote their sets of states respectively.

e State S1: All possible states describing the shaking procedure. States
are dmax neighborhood structures in Section 5.3.1. S1 =
{17 27 cey dmax}~

Pl: |4 865 1 7 3|2

o1: 14,8216 5 1 73

02 6 511 7 3]4|8]|2

03: ' 6 5 1 7 3|2|4]S8

O4: | 214186 5 1, 7 3

Os: 216 S5 1.7 3|48

(b) TSP

Fig. 14. Three-point permutation and three-segment permutation.
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Fig. 15. The illustration of QVNS.

e State S2: All possible states describing the local search procedure.
States are five local search operators in Section 5.3.2. S2 =
{CSwap, CInsr, CInv, TPP, TSP}.

The action set is as same as the corresponding state set, which means
Al = S1 and A2 = S2. Fig. 16 presents an example of state set S2 and
actions set A2, where the arrow indicates a transfer from one state to
another state (“go-to”).

Fig. 16. States S2 and Actions A2 of Q-learning.
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The current action of an agent depends on the last neighborhood it
adopts. After executing a shaking or local search, a reward is calculated
based on the improvement of solutions. Then Q-value is updated,
instructing which neighborhood to transfer.

5.4.2. Reward function

During the learning process, each operator should be allocated a
reward, which is immediate feedback from the application of an
operator.

Durgut et al. (2021) proposed a reward function that overcomes the
degeneration or disruption caused by the immediate result. However, it
is only applicable to single objective evaluation. In order to consider
multiple objectives in reward assignments, we adapt their reward
function to a multi-objective version by normalization and summation.
For a minimization problem, the reward is defined as:

fl\mm ﬁc ﬁ( (x!+l ) )
Z ( jAmaX

fkmm

where x; is the initial solution at time t, and x;; is the new solution after
applying a neighborhood structure or local search operator. fi(e)
denote the k-th objective function, fin. and fimin denote the worst
objective value and the best objective value found so far, respectively.

The reward ensures that if a solution is close to the best objective, it
will get larger r;; the more a new solution is improved, the larger its
reward.

27)

5.4.3. The procedure of the proposed QVNS

Algorithm 8 presents the details of GVNS with Q-learning process,
which consists of 2 steps. Step 1 is a shaking procedure as well as Q1
training. After the execution of shaking, it evaluates the improvement of
solutions and updates Q1 to select the next action-state. Step 2 in-
corporates Q-learning into VND local search, applying all operators in S2
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without repetition and updating Q2 to select the next action-state.

Algorithm 8: GVNS with Q-Learning process

1: Input: parameters learning factor a, discount factor y, Epsilon-greedy factor ¢,
initial solution xo, state set S1, S2, action set A1, A2, the number of episodes E,

Maximum iterations without improvement Max-iter

2: Output: an improved solution x, trained Q-table

3: Initialize Q-table Q1, Q2 as zero matrices, Q1=|S1 x Al|, Q2=|S2 x A2|

4: Initialize the global best solution x* = xo

5: Remember the global best objective fi, and local optimum fi(xo),k = 1,2,3

6: Select an action a; = d at random from A1, and set the initial state s; = d

7: Select an action a; = N at random from A2, and set the initial state s; = N

8: Fort=1:E do # For each episode

9: #Step 1: Shaking procedure and training Q1

10: x = Pareto-based Destruction-Construction (xo, a;, Max_iter)

11: If x < xo do

12: # Update the Q1 and action-state for the next episode

13: Calculate the reward r using equation (27)

14: Q1 = Q-learning (a,7,¢,s1,a:1,r) using equation (21)

15: s1, a;= Epsilon-greedy (Q1,s1, a;) using (22)

16: xo = x, remember the local optimum fi (xo) = fi(x)

17: End if

18: If xo < x* do # Identify the global best solution

19: x* = xo, remember the global best objective f, = min (f;“ﬁl),fk (xo))
20: End if

21: #Step 2: VND Local search procedure and training Q2

22: While S2 # @ # Apply every local search operator without repetition
23: x = Local search (xo, az)

24: If x < xo do

25: # Update the Q2 and action-state for the next episode

26: Calculate the reward r using equation (27)

27: Q2 = Q-learning (a,7,¢,52,az,7) using equation (21)

28: xo = x, remember the local optimum fi (xo) = fi(x)

29: Else # When there is no improvement, choose the next action
30: Remove s, a; from S2,A2

31: sy, az= Epsilon-greedy (Q2,s5, az)

32: End if

33: If xo < x* do # Identify the global best solution

34: x* = xo, remember the global best objective f,, = min(fy,fi(xo))
35: End if

36: End while

37: End for

The complexity of the proposed QVNS is analyzed as follows.

The complexity of the shaking procedure. According to Karimi-
Mamaghan et al. (2023), the complexity of destruction and construction
(lines 9-10) is O(d + dn}_i ;) as we randomly pick d jobs and reinsert
them into n possible positions. Yy ;lx denotes the total number of ma-
chines. The worst-case complexity of Q-learning process from lines
12-16 is O(dmax) because there are at most dp,x updates using equation
2D).

The complexity of the local search procedure. The only difference
between local search and shaking is in Line 24. Since we have five local
search operators, they require O(n}_; ;) when calculating the critical
path. The complexity of Q-learning update from lines 26-29 is O(5).

The complexity of the proposed QVNS. Considering we have E epi-
sodes in total, the total complexity is:
O(E(d+ dn> "1 Ik + dmax + 1> _j 1k + 5) ). Therefore, the complexity
of QVNS is O(n>_i k).

6. Computational experiments and results

This section conducts a series of computational experiments to testify
the proposed algorithm. First, performance indicators are defined to
measure the algorithm’s performance. Since EEHFSP lacks standard
benchmark instances, test instances are randomly generated. Then,
parameter tuning experiments are conducted to determine the key pa-
rameters for the proposed QVNS-NSGA-II. Third, QVNS-NSGA-II is
compared to classical NSGA-II (Deb et al., 2002) and two state-of-the-art
multi-objective evolutionary algorithms (MOEA), namely improved
Jaya (Pan et al., 2022) and modified MOEA/D (Wang et al., 2021).
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Finally, sensitivity analysis experiments are conducted to present
managerial insights.

6.1. Experiment settings

To the best of our knowledge, there is limited previous research with
benchmark instances on the EEHFSP problem. Test instances are
randomly generated. Each test instance is denoted as the “number of
jobs-number of stages-number of machines at each stage” (Luo et al.,
2013). For example, a test instance with 10 jobs, 3 stages, and 4 ma-
chines at each stage is denoted as “10-3-4". The detailed experiment
settings are given below:

(i) Due date d; is determined by the following formula (Ding et al.,
2021):

=m0 (1-e-5).p(1-+5)])

where P, 7 and R represents the lower bound of makespan, tardiness
factor and due date factor respectively. denotes the nearest integer
function. 7€{0.2,0.4} and R€{0.6,1.0}.

(ii) The TOU electricity function is given (Development and Reform
Commission of Jiangsu Province, 2021):

25024n<t < 24n+ 8
100024n + 8<t < 24n+ 11
60024n + 11<t < 24n+17 (CNY/MWh), n€ {0, 1, 2, 3,
100024n + 17<t < 24n + 22

60024n + 22<t < 24n + 24

(28)

flo =

)

The other parameters are shown in Table 5.

The quality of MOEA depends on convergence and diversity. The
former reflects the distance between the obtained front and the optimal
Pareto front, and the latter requires a more even distribution of solu-
tions. Here we adopt the following indicators to compare these two
aspects:

(i) Coverage metric (CM) (Ding et al., 2016): This indicator indicates
the percentage of solutions in the Pareto set B dominated by at least one
solution in the Pareto set A. The closer the CM value is to 1, the better set
A is. CM is calculated by:

{beB|FJac€A:a>bora=b}|
C(A,B) = 3]

(29

The value C(A, B) reflects the dominance relationship between two
solution sets. If all the solutions of B are dominated by some solution of
A, then C(A,B) = 1. Since some solutions in A and B are not dominated
by each other, C(A,B) and 1 —C(B, A) are not necessarily equal.

(ii) Number of Pareto solutions (NPS): NPS is equal to the number of
non-dominated solutions of the Pareto front. A larger NPS indicates a
more diverse Pareto front.

(iii) Spacing matrix (SM) (Wang et al., 2017): SM aims to evaluate

Table 5

Test instance parameter settings.
Factors Levels
Number of jobs 10, 20, and 50
Number of stages 3,5
Number of machines at each stage 3,4,6

Processing time of each operation
Power of machine

U[5,10](hour)

U[5,10](10° W)

{1.2, 1.0, 0.8} (Mansouri et al., 2016)
{1.5, 1.0, 0.6} (Mansouri et al., 2016)
2

Processing speed
Conversion rate

Standby power of machine
Reset power of machine 4

Carbon emission coefficient 0.2 (ton/MWh)
Price of carbon emissions 30 (CNY/ton)
Emission Allowance 1 ton/(job-stage)
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the diversity of the obtained Pareto solutions (uniformly distributed in
the front). A smaller SM suggests a more even spread of the solutions in a
Pareto front. SM can be calculated by the following equation

(30)

where d; is the distance measure, which is the minimum value of the
sum of the absolute difference in normalized objective function values
between the i-th solution and any other solution in the obtained non-

dominated set A.

¢ —,QA&,(ZW 40 ) v
d; is the mean value of d;, and it is calculated by:
S
d===- (32)
|A]

f.(-) denotes the normalized objective value of k-th objective of in-
dividual x. finax and fimi, represent the maximum and minimum value of
the objective function f; in all tests.

ﬁ( X 7ﬁ(min

)
7ﬁ<min7

. 33
Foum @3

f(x) = k=1,23

6.2. Parameter tuning

The QVNS-NSGA-II contains five significant parameters: population
size Psize, crossover rate Pc, mutation rate Pm, stop condition of QVNS
Q-iter and CPU time (CT x n x m second). CT denotes cycle time; n and m
are the numbers of jobs and stages. Three-level Taguchi method DOE
experiments (Pan et al., 2022) of these parameters are correspondingly
conducted using a moderate-scaled instance “20-3-3”. Each parameter
is regarded as a factor, and three factor levels are considered for each
factor, see Table 6.

The orthogonal array L;(3%), listed in Table 6, is selected with five
factors, each at three levels. Without loss of generality, the other pa-
rameters are set, i.e., the number of generations Max Gen = 100,
learning factor a = 0.1, epsilon factor ¢ = 0.1, discount factor 4 = 0.1,
maximum DC depthd,qx = 8. The performance indicator SM is used as
the response indicator (Table 7).

The main effect plot of parameters is shown in Fig. 17. It can be
observed that CT and Q-iter have more significant effects than Pc. The
parameters of the QVNS-NSGA-II are set as population size Psize = 120,
crossover probability Pc = 0.8, mutation probability Pm = 0.3, Q-iter =
3, and CT = 0.8.

For a fair comparison, all four algorithms adopt the crossover and
mutation method. All algorithms have the same population size (Psize)
of 120 and termination condition that CT x n x m is met.

In NSGA-II (Deb et al., 2002), crossover rate(Pc) and mutation rate
(Pm) are set as 0.8 and 0.3. In improved Jaya (Pan et al., 2022), power
down EES is set as energy-efficient strategy. As for modified MOEA/D
(Wang et al., 2021), critical-path swap is used as the local search
operator for the objective of makespan, and power down EES is adopted

Table 6
Levels of parameters.

Factors Factor levels

1 2 3
Psize 80 100 120
Pc 0.6 0.8 0.9
Pm 0.1 0.3 0.5
Q-iter 2 3 5
CcT 0.5 0.8 1.2
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Table 7
The orthogonal array of DOE.
No. Psize Pc Pm Q-iter CT SM
1 80 0.6 0.1 2 0.5 0.091
2 80 0.6 0.1 2 0.8 0.076
3 80 0.6 0.1 2 1.2 0.067
4 80 0.8 0.3 3 0.5 0.085
5 80 0.8 0.3 3 0.8 0.067
6 80 0.8 0.3 3 1.2 0.065
7 80 0.9 0.5 5 0.5 0.097
8 80 0.9 0.5 5 0.8 0.073
9 80 0.9 0.5 5 1.2 0.071
10 100 0.6 0.1 2 0.5 0.070
11 100 0.6 0.1 2 0.8 0.059
12 100 0.6 0.1 2 1.2 0.068
13 100 0.8 0.3 3 0.5 0.082
14 100 0.8 0.3 3 0.8 0.052
15 100 0.8 0.3 3 1.2 0.064
16 100 0.9 0.5 5 0.5 0.097
17 100 0.9 0.5 5 0.8 0.083
18 100 0.9 0.5 5 1.2 0.078
19 120 0.6 0.1 2 0.5 0.076
20 120 0.6 0.1 2 0.8 0.074
21 120 0.6 0.1 2 1.2 0.064
22 120 0.8 0.3 3 0.5 0.074
23 120 0.8 0.3 3 0.8 0.054
24 120 0.8 0.3 3 1.2 0.084
25 120 0.9 0.5 5 0.5 0.081
26 120 0.9 0.5 5 0.8 0.057
27 120 0.9 0.5 5 1.2 0.081
Psize Pc Pm Q-iter cT
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Fig. 17. Main effect plot of parameter tuning.

to reduce TEC. The parameters are strictly followed from the original
paper: neighborhood size is set as 10 and crossover rate is set as 0.85.

All the experiments are coded in Python 3.9 and are executed on a
laptop computer with Intel i5-11300H 3.10 GHz and 16 GB RAM. Each
instance of an algorithm is run five times to obtain the average values
(mean) and standard deviation (std) used for evaluation.

6.3. Algorithm comparison and analysis

In this section, QVNS-NSGA-II is compared to classical NSGA-II (Deb
et al., 2002) and two state-of-the-art MOEAs, namely improved Jaya
(Pan et al., 2022) and modified MOEA/D (Wang et al., 2021). The
comparison results of NPS, SM and CM are listed in Tables 8-10. The
bold values represent the best results among the three algorithms. Hit
rate records the number of times the algorithm performed the best in all
instances.

Table 8 reports the coverage metric between the four MOEAs, for
simplicity, each algorithm is represented by an initial letter (i.e., C(Q, J)
for QVNS-NSGA-II and Jaya). As seen from the results, the proposed
QVNS-NSGA-II has overwhelming superiority in all instances. This
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Table 8
The comparison result based on CM.
[€())] CIN, Q cQ J CU, Q cQ M M, Q
mean std Mean std mean std mean std mean std mean std
10-3-3 0.89 0.16 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
10-3-4 0.88 0.11 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
10-3-6 0.98 0.01 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
10-5-3 0.96 0.05 0.00 0.00 0.99 0.01 0.00 0.00 1.00 0.00 0.00 0.00
10-5-4 0.84 0.14 0.00 0.00 0.98 0.03 0.00 0.00 1.00 0.00 0.00 0.00
10-5-6 0.98 0.02 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
20-3-3 0.79 0.17 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
20-3-4 0.98 0.03 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
20-3-6 0.57 0.12 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
20-5-3 0.81 0.19 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
20-5-4 0.63 0.22 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
20-5-6 0.84 0.13 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
50-3-3 0.75 0.15 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
50-3-4 0.75 0.10 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
50-3-6 0.58 0.11 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
50-5-3 0.80 0.18 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
50-5-4 0.95 0.06 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
50-5-6 0.85 0.12 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Hit rate 18/18 0/18 18/18 0/18 18/18 0/18
other three MOEAs.

Table 9

Th i 1t based on NPS. L. . L .
© comparison resu’t based on 6.4. Statistical test and visualization of solutions
Instance NSGA-II Jaya MOEA/D QVNS-NSGA-II

mean  std mean std mean std mean  std To make the comparison results convincing statistically, paired-

10-3.3 o7 s 6 5 10 5 a8 - sample t-tests are conducted t.o ehml.nate stochastic error (Ding et al.,
10-3-4 31 10 5 2 8 4 41 11 2016). The term “t-test (A, B)” in the first column suggests the conducted
10-3-6 89 5 20 7 13 6 77 3 paired-sample t-test between algorithm A and B. p-value results from the
10-5-3 37 15 8 2 7 1 52 7 hypothesis tests are presented in Table 11. The significance level is set as
18'2'2 2(7] ;4 z ; Z7 3 ;Z i 95% (a = 0.05). Note that the t-test (A, B) on CM compares the differ-
20-33 24 6 5 1 10 5 a1 9 ence between C (A, B) and C (B, A).
20-3-4 33 5 8 4 10 3 38 8 The results show QVNS-NSGA-II significantly outperforms the other
20-3-6 20 8 6 2 12 3 51 7 three algorithms in terms of CM, SM and NPS in the statistical sense.
20-5-3 14 6 6 4 5 2 33 8 Specifically, QVNS-NSGA-II performs better in searching diverse and
2054 m 63 > 7 2 e high-quality Pareto front solutions than NSGA-II, i dJ d
2056 34 1 6 3 s 2 37 10 igh-qua ity Pareto front solutions than -II, improved Jaya an
50-3-3 25 10 9 4 6 1 24 4 modified MOEA/D.
50-3-4 24 11 5 4 7 3 28 8 Furthermore, the 3D scatter plots of the Pareto fronts by four MOEAs
50-3-6 21 4 5 2 5 2 29 8 are also given in Fig. 19. The axes represent three objective functions,
gg'g'i ;g :;’2 ; i g § 33 Z namely TT, TEC and CTC, respectively. The confidence level is set as
50-5-6 25 7 6 3 6 3 29 10 95% to obtain a 3D confidence ellipsoid (green), which describes the
Hit rate 4/18 0/18 0/18 14/18 Pareto front in 3D space. We take 20-5-4 and 50-3-6 as examples of

proves QVNS-NSGA-II has great capability to find solutions with better
convergence than the other three MOEAs. Such a situation can be
explained by the fact that QVNS-NSGA-II leverages new NEH heuristic
and Q-learning-driven GVNS to exploit more promising solution space
with high efficiency.

Table 9 presents NPS comparison between the NSGA-II, improved
Jaya, modified MOEA/D, and QVNS-NSGA-IL. It can be seen that QVNS-
NSGA-II outperforms the other three algorithms in finding diverse so-
lutions in most cases. The proposed QVNS-NSGA-II can even obtain
three to five times more Pareto solutions than Jaya and MOEA/D.

When QVNS-NSGA-II does not perform the best in NPS, QVNS-NSGA-
IT has a much lower standard deviation of NPS than NSGA-II. This in-
dicates better robustness of our algorithm. For example, in instance
50-5-3, QVNS-NSGA-II has a much lower standard deviation (3) of NPS
than NSGA-II (33).

Table 10 summarizes the SM comparison results of four MOEAs.
QVNS-NSGA-II still outperforms the other three algorithms in the ma-
jority of instances (10/18).

To further illustrate the comparison results of the four algorithms,
the boxplot of SM is given below. In Fig. 18, the SM values of QVNS-
NSGA-II are averagely lower with a narrower interval range than the
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medium- and large-scale instances.

From Fig. 19, the Pareto solutions generated by QVNS-NSGA-II are
significantly superior to others. The confidence ellipsoid is close to the
coordinate origin, which visually reflects the convergence to the optimal
front. Also, QVNS-NSGA-II provides much more diverse solutions that
can help decision-makers to select based on preference.

The reason why QVNS-NSGA-II outperforms NSGA-II, Jaya and
MOEA/D lies in the QVNS procedure. GVNS takes advantage of
knowledge from Q-learning to achieve AOS in the DC phase and local
search phase.

RL-driven AOS lightens the burden of blind search, enabling appro-
priate switches among DC neighborhood structures and local search
operators without following a trajectory. This provides the algorithm
with higher exploration and exploitation capabilities.

Considering the good balance of convergence and even distribution
of the solutions, QVNS-NSGA-II is highly recommended to solve the
multi-objective hybrid flow shop scheduling problem.

6.5. Sensitivity analysis
6.5.1. Trade-offs between three objectives

We further investigate the relationship between the three objectives.
Fig. 20 and Fig. 21 show the trade-offs between the three objectives of
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Table 10
The comparison of MOEAs based on SM.
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Instance NSGA-II Jaya MOEA/D QVNS-NSGA-II
mean std mean std mean std mean std
10-3-3 9.74E-02 3.13E-02 2.76E-01 2.82E-01 2.02E-01 7.49E-02 7.77E-02 2.37E-02
10-3-4 1.22E-01 1.11E-02 6.32E-01 4.97E-01 1.89E-01 1.50E-01 1.34E-01 6.78E-02
10-3-6 6.77E-02 1.19E-02 4.11E-01 2.80E-01 5.81E-02 6.86E-02 6.52E-02 1.33E-02
10-5-3 1.59E-01 5.95E-02 2.44E-01 2.02E-01 1.50E-01 8.85E-02 6.43E-02 1.72E-02
10-5-4 9.34E-02 3.24E-02 1.33E-01 1.91E-02 2.37E-01 3.84E-02 8.52E-02 1.99E-02
10-5-6 4.07E-02 1.56E-02 3.21E-01 2.09E-01 2.40E-01 9.64E-02 5.17E-02 7.29E-03
20-3-3 1.90E-01 2.06E-01 1.28E-01 7.51E-02 1.23E-01 4.59E-02 1.23E-01 6.05E-02
20-3-4 1.40E-01 4.48E-02 2.32E-01 1.40E-01 1.45E-01 7.14E-02 7.90E-02 1.42E-02
20-3-6 1.51E-01 1.00E-01 2.58E-01 1.53E-01 1.54E-01 1.08E-01 1.12E-01 2.41E-02
20-5-3 8.46E-02 1.72E-02 2.26E-01 1.74E-01 2.02E-01 2.14E-01 1.24E-01 3.06E-02
20-5-4 1.26E-01 6.35E-02 6.42E-02 9.47E-02 1.08E-01 3.20E-02 8.12E-02 3.44E-02
20-5-6 8.94E-02 2.85E-02 3.32E-01 5.47E-02 1.03E-01 8.04E-02 8.41E-02 3.44E-02
50-3-3 1.23E-01 9.41E-02 2.58E-01 1.47E-01 7.18E-02 5.38E-02 7.83E-02 1.64E-02
50-3-4 1.11E-01 3.88E-02 2.42E-01 1.31E-01 6.89E-02 1.55E-02 7.49E-02 2.79E-02
50-3-6 8.75E-02 4.68E-02 3.65E-01 7.45E-02 9.12E-02 1.24E-01 8.35E-02 2.28E-02
50-5-3 8.74E-02 4.47E-02 4.70E-01 3.36E-01 1.36E-01 9.41E-02 1.45E-01 4.86E-02
50-5-4 1.29E-01 4.97E-02 3.05E-01 2.53E-01 1.48E-01 7.64E-02 1.05E-01 4.05E-02
50-5-6 9.24E-02 2.64E-02 4.33E-01 4.28E-01 1.15E-01 5.65E-02 7.90E-02 2.96E-02
Hit rate 4/18 1/18 2/18 10/18
stage, TEC and CTC can be improved significantly at the expense of a
0 slight deterioration of TT.
It is observed from Fig. 21(c) that CTC and TEC have a somewhat
06 positive correlation because they are energy consumption-related.
However, the increase of TEC is not necessarily followed by the in-
03 crease of CTC due to the effect of TOU mechanism. The decision-maker
o is supposed to select a schedule with a lower CTC given the same TEC.
=
“ o 6.5.2. Effect of different TOU tariffs
‘ TOU mechanisms aim to encourage electricity users including
o | manufacturers to adjust the temporal schedule of their electricity de-
mands. However, TOU price varies with the season depending on sea-
o $ sonal demand differences and local electricity system capabilities. It is
[ usually defined in advance for periods of a day, week, month or year
oo (Shrouf et al., 2014). For example, China has issued documents to
Jaya MOEAD NSGA-IT QUNS-NSGA-IL enhance effect of TOU tariffs including measures that adopting CPP in
summer, changing TOU based on seasons (National Province Develop-
Fig. 18. The boxplot of SM results. ment and Reform Commision, 2021). Hence, it is important for man-
agers to figure out how the TOU tariffs affect the scheduling results. A
Table 11 moderate-scaled instance “20-3-3” is employed to obtain Pareto
Paired-sample t-tests for MOEAs on CM, SM and NPS (a — 0.05, p-value). ocl;fci‘mal solutions under six different TOU tariffs in terms of TT, TEC and
o M NPS Six TOU tariffs are formulated for sensitivity analysis in Fig. 22. TOU
t-test (QVNS-NSGA-II, NSGA-IT) 0.000 0.044 0.014 tariff (1) maintains the same price all the time as a control group. TOU
t-test (QVNS-NSGA-II, Jaya) 0.000 0.000 0.000 tariff (4) refers to Development and Reform Commission of Jiangsu
t-test (QVNS-NSGA-II, MOEA/D) 0.000 0.000 0.000

instance “10-3-3” in 3D and 2D respectively.

Fig. 20 demonstrates that TT, TEC and CTC in a Pareto solution al-
ways conflict with each other. Thus, it is not intuitive for a decision
maker to choose an appropriate solution from a group of Pareto solu-
tions considering the conflicts between the three objectives.

Fig. 21 shows 2D scatter plots concerning the combination of two
objectives. It can be seen from Fig. 21(a) and Fig. 21(b) that TEC and
CTC decrease greatly with the increase of TT. The reason is that a loose
TT makes the use of slow-speed machines possible, which consumes less
power than high-speed ones. Another reason is that the allocation of jobs
onto the off-peak periods with low electricity prices leads to an increase
in TT.

The decrease tendency can be divided into 2 stages: rapid decrease
stage and mild decrease stage. In the rapid decrease stage, TEC and CTC
go down sharply when TT increases. In the mild decrease stage, TEC and
CTC decline moderately when TT grows. Thus, in the rapid decrease
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Province (2021) for spring and fall seasons. TOU tariffs (2) and (3) are
the variants of (4) using a lower off-peak price (200CNY/MWh) and a
lower on-peak price (750CNY/MWh), respectively. Both (5) and (6)
employ CPP policy considering the electricity demands in summer and
winter are much higher than those of spring and fall.

In Fig. 23, TT sees no apparent trend by adjusting the price and the
period of TOU tariffs. There is no significant difference regarding the
total tardiness TT by different TOU tariffs, indicating that adopting the
TOU mechanisms can hardly affect product delivery.

It is observed from Fig. 24 that TOU tariffs have a significant impact
on TEC. TOU tariffs (2) and (3) lead to much lower TEC than no TOU
tariff (1) does. This means the use of TOU tariffs (2) and (3) can have a
positive effect on electricity cost-saving for manufacturers. Statistically,
the TEC under TOU tariff (4) is similar to the TEC under no TOU tariff
(1). The TEC under TOU tariff (4) is much larger than the TECs under
TOU tariffs (2) and (3) because the prices of electricity periods increase.

Similarly, there is a significant increase in TEC under TOU tariff (4)
as the CPP policy is employed. In a broader sense, TOU tariffs vary with
seasons. The fluctuation of TEC inspires manufacturers to allocate more
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Fig. 19. 3D scatter plot of four MOEAs with confidence ellipsoids.

orders into seasons with TOU tariffs (2), (3) and (4) in order to save TEC.

In addition, CTC remains the same under different TOU tariffs. This
means the use of TOU mechanisms has a limited impact on CTC savings
for manufacturers (Fig. 25).

7. Conclusion

This paper investigates an energy-efficient hybrid flow shop sched-
uling problem with production- and environment-related objectives
(total tardiness TT, total energy cost TEC and carbon trading cost CTC)
simultaneously. A novel mixed-integer nonlinear programming model is
presented, which considers uniform parallel machines and practical EES
in both energy-supply and -demand sides, i.e., time-of-use tariffs and
power down strategy, respectively. Then the properties of the problem
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Fig. 20. Trade-offs between 3 objectives of instance “10-3-3".

are analyzed.

To solve the problem, we integrate RL, particularly Q-learning al-
gorithm, into GVNS to achieve adaptive operator selection in the
shaking and local search phase. Q-learning leverages the learned expe-
rience of Q-tables to select the most appropriate operator from a set of
efficacious neighborhood structures and problem-specific local search
operators. Then we first combine the Q-learning driven GVNS, a multi-
objective NEH heuristic, and NSGA-II and propose a new algorithm
named QVNS-NSGA-II. To the best of our knowledge, this is among the
first research that combines metaheuristics with RL to solve EEHFSP.

We conduct a comprehensive set of experiments to evaluate the
performance of our proposed algorithm. We compare the well-tuned
QVNS-NSGA-II with a classic metaheuristic NSGA-II and two state-of-
the-art metaheuristics, namely improved Jaya and modified MOEA/D.
The experiment results show that the proposed algorithm can find more
diverse Pareto solutions with high quality. This contributes to the Q-
learning driven GVNS to prevent the search from being trapped into
local optima. We can conclude that the proposed algorithm outperforms
the three metaheuristics significantly for EEHFSP.

In addition, some management insights are gained from sensitivity
analysis. As TT increases, TEC and CTC witness rapid decrease followed
by mild decrease. Decision-makers can make a compromise between the
three objectives. Besides, the analysis of different TOU tariffs demon-
strates that TOU tariffs and CPP policy have a great impact on TEC,
however, it can hardly affect TT and CTC. Manufacturers should allocate
more orders into seasons with specific TOU tariffs that can save TEC
when TT and CTC are stable.

Limitations and future directions are summarized. This paper designs
the same action set and state set, both of which are neighborhood
structures/ local search operators. However, this representation cannot
take into account the quality of the solution or the iteration of the
metaheuristic. The definition of action and state sets can be further
investigated in the future. Besides, future research can investigate the
integration of reinforcement learning in more phases of metaheuristics,
such as initialization, parameter tuning, and fitness calculation. It is also
interesting to employ more advanced and state-of-the-art RL techniques
for EEHFSP.
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Appendix A. Fast non-dominated sorting and crowding distance calculation

Algorithm 4: Fast non-dominated sorting

A WN =

: Input: a population P

: Output: Pareto fronts and ranks
: For eachp € Pdo

: Define S, as the set of solutions that the solution p dominates, n, as the

number of solutions which dominate the solution p

. SetS, =@,n, =0
: For each g € P do
: If p > q then

: SetS, =S, U{q}
: Else if p < q then

: Setn, =mnp, + 1

: End if

: If n, = 0 then

: Set prank = 1 # Prank- is the rank of p

1 Set Fy = F1 U {p} #F, is the (first) Pareto front
: End if

: End for

: Seti =1

: While F; # @

: SetQ =@

: Foreachp € F;

: ForeachqeS,
:ng =ng—1

: If n; = 0 then# q belongs to the next front
: Set Grgnk =1+ 1
: SetQ =QU{q}
: End if

: End for

: End for

: Seti =i+ 1

: SetF; =Q

: End while

Algorithm 5: Crowding-distance calculation

NO U wWwN =

: Input: a Pareto-front F;

: Output: crowding-distance of a solution in Pareto-front F;
: Let [ denote the number of solutions in the Pareto-front F;
: For each k do

: Set Fi[k]
: End for
: For each objective f; do

=0

distance

(continued on next page)
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(continued)

Computers and Operations Research 159 (2023) 106360

Algorithm 5: Crowding-distance calculation

8: Sort individuals in ascending order using each objective value,F; = sort(Fi., f,)

9: Set Fi[l]gigtance = Filllaistance =

10: Fori=2to (I-1) do

11: Set Fillgwance = Filllasance + (f(Fii+1)) = fi(Rli—1]) ) / (> —fr)
12: End for

13: End for
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