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A B S T R A C T   

The urgent mission for carbon peak and carbon neutrality is demanding greater industrial sustainability. Energy- 
efficient hybrid flow shop scheduling problem (EEHFSP) has been raising increasing attention in recent years. 
This paper studies a new EEHFSP with uniform machines to minimize total tardiness, total energy cost, and 
carbon trading cost. Time-of-use tariffs and power down strategies are simultaneously adopted. A novel multi- 
objective mixed-integer nonlinear programming model for the problem is proposed. To solve the model, we 
propose a Q-learning and general variable neighborhood search (GVNS) driven non-dominated sorting genetic 
algorithm II (QVNS-NSGA-II). The novelty of the algorithm is that we incorporate Q-learning into GVNS to guide 
premium adaptive operator selection throughout the shaking and local search processes. A distinguishing feature 
is that the states and actions of Q-learning are set as neighborhood structures and local search operators. The Q- 
learning-driven GVNS is embedded into NSGA-II to promote the exploration and exploitation capability. 
Experimental results show that the proposed QVNS-NSGA-II outperforms NSGA-II, improved Jaya, and modified 
MOEA/D in terms of the quantity, quality of Pareto solutions, and computational efficiency. Sensitivity analysis 
also derives several managerial implications. The proposed approach can be applied to improve sustainability 
and productivity for hybrid flow shop manufacturers.   

1. Introduction 

Energy shortage is one of the most serious problems in many coun
tries due to disrupted supply chains, such as the COVID-19 pandemic or 
the Russian-Ukrainian conflict. Besides, the majority of the energy we 
consumed is non-renewable, such as oil, natural gas, and coal in Fig. 1 
(IEA, 2021). Energy consumption is accompanied by the release of large 
amounts of greenhouse gases. This situation exacerbates climate change, 
making energy-saving and carbon-reducing issues more of vital signifi
cance and indispensable for countries around the world. For example, in 
2021, China launched a thirty-year plan “carbon peaking” and “carbon 
neutrality” aiming at reaching the CO2 emissions peak before 2030 and 
achieving carbon neutrality ahead of 2060 (The State Council of the 
People’s Republic of China, 2021). 

It is demonstrated that the industry sector consumed over 40% of 
electricity and 50% of coal over the last five decades in Fig. 2 (IEA, 
2021). Thus, the industrial sector is primarily responsible for estab
lishing sustainability to reduce energy-consuming and alleviate envi
ronmental impacts e.g., global warming. Efforts are therefore devoted to 

energy-efficient scheduling, mainly focusing on improving the ratio 
between energy input and the desired output of production or service 
systems, i.e., energy efficiency. 

The hybrid flow shop scheduling problem (HFSP), also known as the 
flexible flow shop scheduling problem, is a important production sched
uling problem widely confronted by many industries, such as electronics 
(Yue et al., 2023), steel (Jiang et al., 2023) and glass industries (Wang 
et al., 2020). The HFSP enables flexibility and is suitable for multi- 
variety and small-batch production (Ribas et al., 2010). It is composed 
of multiple production stages, where each stage consists of multiple 
parallel machines. Each job has to go through all stages in the same 
order string. 

Most research assumes that parallel machines at each stage of the 
HFSP are identical for simplicity. However, the machines in the same 
stage can run at different speeds. Particularly, higher processing speeds 
require higher energy consumption rates but lead to shorter processing 
times, while lower processing speeds take the converse effect (Wu and 
Che, 2020). The scenario is referred to as a uniform machine environ
ment, to which only 8% of the research on the HFSP contributes (Lee and 
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Loong, 2019). Therefore, this paper extends the study of HFSP with 
uniform parallel machines. 

Usually, classical HFSP discussed production-related indicators such 
as due date, makespan, and total tardiness (Chen et al., 2020a; Chen 
et al., 2020b). Taking production efficiency as foundational consider
ation, the energy-efficient hybrid flow shop scheduling problem (EEHFSP) 
naturally focuses on multi-objective optimization for integrating both 
production and environmental concerns (e.g., makespan Cmax and total 
energy consumption TEC). 

This paper investigates an EEHFSP to minimize the three objectives 
concurrently, namely total tardiness time (TT), total energy cost (TEC), and 
carbon trading cost (CTC). TT is a typical time-related objective for make- 
to-order production, playing a key role in satisfying customers’ 
demands. 

TEC and CTC are included for energy efficiency, wherein CTC is first 
defined and considered for lowering carbon emissions. In practice, the 
carbon trading markets have been established in major economies, such 
as the US, the EU, and China. For example, the EU has established the 
largest carbon market EU Emissions Trading System. The greenhouse 
gases that can be emitted by plants are limited by a ‘cap’ on the number 
of emission allowances. Within the cap, companies receive or buy 
emission allowances, which they can trade as needed (European Com
mission, 2023). 

Energy-efficient strategies (EES) at the operational level are developed 
by researchers to cut down TEC (Gahm et al., 2016, Li and Wang, 2022). 
These operational strategies can be divided into two categories: “energy 

supply” and “energy demand” (Gahm et al., 2016):  

• Energy supply: This class includes the EES with respect to energy 
suppliers, e.g., real-time pricing (Khalaf and Wang, 2018), time-of-use 
(TOU) tariffs (Luo et al., 2013, Cui and Lu, 2021, Ding et al., 2021), 
and critical peak pricing (CPP) (Chen et al., 2022a; Chen et al., 2022b).  

• Energy demand: This class includes the EES on how the demand side 
increases energy efficiency, e.g., power down (Dai et al., 2013, Wang 
et al., 2020) and speed-scaling mechanism (Wu and Che, 2020, Pan 
et al., 2022). 

Concerning energy supply EES, two common strategies are consid
ered, namely TOU tariffs and CPP. TOU tariffs refer that electricity 
prices fluctuate over a day according to temporal electricity demand. 
CPP charges punitive electricity prices during periods of high demand. 
TOU tariffs and CPP policy are often adopted jointly, providing us with 
the opportunity to shift machine running time from on-peak hours (high 
price) to low-peak hours (low price), which aims to save energy cost 
(Shrouf et al., 2014, Gahm et al., 2016, Ding et al., 2021). 

With respect to energy demand EES, power down strategy is 
deployed in this paper. The power down strategy originated from one of 
the most famous works on EES done by Mouzon et al. (2007). The power 
down mechanism shuts down idle machines and resets them until 
needed, which can save a significant amount of energy without pro
longing TT. Afterward, Mouzon and Yildirim (2008) extended this study 
by applying the concept of break-even duration, where the machine 
would be shut down when idle time exceeded the break-even duration. 
In this study, we jointly consider energy supply and energy demand EES 
to decrease both TEC and CTC. 

The two-stage HFS has been proven an NP-hard problem even when 
the first stage has two identical parallel machines and the second stage 
has only one machine (Gupta, 1988). Consequently, the considered 
EEHFSP with multiple EES and objectives is NP-hard in a strong sense. 
Most of the research in the literature, therefore, adopts metaheuristics 
such as genetic algorithm (GA), tabu search (TS), and variable neigh
borhood search (VNS) to solve the problem (Chen et al., 2020a; Chen 
et al., 2020b, Zhao et al., 2021a). 

Metaheuristics improve the solution in an iterative way using local 
search operators while at the same time trying to escape from local 
optima (Gendreau and Potvin, 2019). In fact, a single operator may 
perform differently during the search process. The reason lies in the fact 
that the search space of a combinatorial optimization problem is non- 
stationary and includes different search regions with dissimilar char
acteristics. Different operators specialize in different regions (Li et al., 
2013). Therefore, researchers may deploy multiple local search opera
tors to enhance the search robustness of metaheuristics (Karimi- 
Mamaghan et al., 2022, 2023; Zhao et al., 2017; Öztop et al., 2020). 

A major concern naturally comes into mind when designing such a 
metaheuristic: which order should the search operator be deployed to 
guide the metaheuristic to global optima efficiently? Two fashions are 
commonly used: offline and online. In offline operator selection, oper
ators are deployed by sequence at random without any knowledge from 
the former search. In contrast, online operator selection selects the most 
appropriate operators dynamically during the search process. 

Adaptive operator selection (AOS) is one kind of online operator se
lection using extracted knowledge from the search environment (Li 
et al., 2013). The main steps of AOS are as follows: reward computation, 
credit assignment, operator selection and move acceptance. AOS eval
uates the reward based on solution improvements after applying an 
operator and then assigns the credit to the operator to update knowl
edge. Depending on the learned experience, AOS selects the next oper
ator and decides whether to accept a move or not. Sometimes AOS and 
hyper-heuristics can be used interchangeably. Refer to the review paper 
for details (Karimi-Mamaghan et al., 2022). 

In recent years, there has been a growing research interest in inte
grating machine learning techniques into metaheuristics, enabling 

Fig. 1. Share of world total final consumption by source, 2019.  

Fig. 2. Electricity total final consumption by sector, 1971–2019.  
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metaheuristics to extract knowledge from data (Bengio et al., 2021; 
Karimi-Mamaghan et al., 2020, 2022, 2023; Talbi, 2021). Particularly, 
reinforcement learning (RL) as a subfield of machine learning, specializes 
in interacting over time with its environment to achieve a goal (Richard 
and Andrew, 2019). The property of RL makes it just suitable to drive 
AOS select operators at each step, which is rising in heat (Cai et al., 
2021; Durgut et al., 2021; Karimi-Mamaghan et al., 2023; Richard and 
Andrew, 2019). 

To solve the EEHFSP problem, this paper proposes a novel RL-driven 
hybrid meta-heuristic. We adopted Q-learning, a famous RL algorithm, to 
learn the optimal behavior of operators. The Q-learning-driven GVNS 
(QVNS) realizes AOS in the EEHFSP to select appropriate local search 
operators during iteration. Then QVNS is embedded into Non- 
dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) 
to form a new algorithm called QVNS-driven NSGA-II (QVNS-NSGA-II). 
To the best of our knowledge, this is among the first research that 
combines metaheuristics with RL to solve the EEHFSP. 

The main contributions of this paper are summarized. 

• We presented a novel multi-objective mixed-integer nonlinear pro
gramming (MINLP) model for EEHFSP to minimize time-related, 
environment-related objectives (i.e., TT, TEC, and CTC). The model 
considers both energy supply side EES (TOU tariffs and CPP) and 
energy demand side EES (power down mechanism) with uniform 
parallel machines. The properties and complexity of the presented 
model are analyzed.  

• The Q-learning is incorporated into GVNS to perform AOS during the 
search, enabling the agent to select the appropriate operator adap
tively in the shaking and local search phases. The algorithm 
complexity is also given. In QVNS, the Q-learning features a 
specialized reward function and Pareto solution move acceptance for 
EEHFSP. GVNS considers sets of problem-oriented neighborhood 
structures and local search operators. 

• The proposed QVNS-NSGA-II is among the first RL-served meta
heuristics for EEHFSP. QVNS is performed during each iteration to 
improve the incumbent solution for higher diversity and quality. 
Experimental results demonstrate the superiority of our algorithm in 
terms of quality, diversity, and computational efficiency. A sensi
tivity analysis is also conducted to yield managerial insights in 
selecting preferable Pareto solutions. 

The remainder of this paper is organized as follows. In Section 2, 
works related to EEHFSP and RL-assisted metaheuristics are briefly 
reviewed. The detailed problem formulation and mathematical model 
are described in Section 3. Section 4 introduces the background of GVNS 
and Q-learning. Section 5 presents the whole picture of the proposed 
QVNS-NSGA-II. Then the proposed algorithm is numerically compared 
to the classical NSGA-II as well as two state-of-the-art algorithms in 
Section 6. Finally, Section 7 concludes the paper and discusses the 
possible directions of future research. 

2. Literature review 

Over the past three decades, extensive effort has been devoted to the 
flow shop scheduling problem (FSP). Refer to the comprehensive re
views given by Yenisey and Yagmahan (2014), and Alejandro Rossit 
et al. (2018). FSP can be roughly classified into three main categories: 
permutation FSP (PFSP), hybrid FSP (HFSP), and distributed FSP 
(DFSP). As the concern for environmental protection grows, the research 
on energy-efficient FSP has been increasing significantly since 2013 
(Gao et al., 2020, Li and Wang, 2022). From a methodological 
perspective, researchers are carrying out extensive work on efficient 
metaheuristics. The integration of machine learning knowledge into 
metaheuristics has attracted enormous attention recently (Bengio et al., 
2021; Karimi-Mamaghan et al., 2022). 

In what follows, we mainly review two streams of works highly 

related to our research: (1) Energy-efficient flow shop scheduling, and 
(2) RL-based metaheuristics. At last, we summarize the research gaps in 
this paper. 

2.1. Energy-efficient flow shop scheduling 

In this section, we mainly focus on problem characteristics including 
production environment, energy-efficient strategies, and objectives. 
Table 1 shows the classification of research on energy-efficient FSP 
(EEFSP) within the last ten years. 

Quite a few EEFSP studies concentrated on PFSP and DFSP, in which 
especially the number of papers related to DFSP is increasing in recent 
three years. HFSP is an extension of PFSP, with the advantage of pro
duction flexibility (Lei and Zheng, 2017). HFSP can also act as compo
nents of DFSP, for instance, Lu et al. (2022) investigated a distributed 
HFSP to minimize the Cmax and TEC. 

Aiming to EEFSP, most research jointly considers production-related 
objective Cmax and energy-related objective TEC. TT plays a key role in 
improving customer satisfaction, however, few papers incorporate the 
objective of minimizing TT. Besides, green objectives such as total car
bon emission (TCE), noise, and pollution are still hardly incorporated 
into EEFSP (Li and Wang, 2022). Dong and Ye (2022) optimized TCE and 
TEC under TOU prices on a distributed two-stage reentrant HFSP. Their 
study neglected the importance of production-related indicators. 

Ghorbani Saber and Ranjbar (2022) consider the minimization of TT 
and TCE in PFSP. They developed a multi-objective decomposition- 
based heuristic algorithm, as well as a multi-objective VNS algorithm to 
solve the problem. As far as we are concerned, CTC has never been 
considered in EFFSP for the purpose of green scheduling. No paper in
vestigates an EEHFSP problem to minimize TT, TEC and CTC 
simultaneously. 

Furthermore, most research only takes one-side energy-efficient 
strategy, for example, either power down (energy demand), speed- 
scaling (energy demand), or TOU (energy supply) mechanisms. 

With respect to energy demand strategies, many studies extensively 
investigated speed-scaling strategy in energy demand. The speed-scaling 
strategy assumes machines can adjust among discrete speeds dynami
cally during processing, so as to save energy costs. Ding et al. (2016) 
adopted speed-scaling strategy to reduce TCE of a PFSP and proposed a 
modified NEH heuristic and an iterated greedy algorithm to solve the 
model. Goli et al. (2023) first presented a novel metaheuristic to opti
mize a non-permutation FSP and lot-sizing. This model aimed to 
determine the lot size and determine each machine’s speed to minimize 
Cmax and TEC simultaneously. Wang et al. (2023a) presented an energy- 
efficient fuzzy HFSP model using speed-scaling strategy and employed 
extended NSGA-II to minimize fuzzy Cmax and TEC. 

Compared to speed-scaling strategy, less research focused on power 
down strategy, which shuts down idle machines to save energy con
sumption. Based on power down strategy, Dai et al. (2013) proposed a 
novel mathematical model for EEHFSP. An improved genetic-simulated 
annealing algorithm was adopted to make a compromise between Cmax 
and TEC. Lu et al. (2022) extended the study of power down strategy 
into DFSP. They addressed the problem by designing a Pareto-based 
multi-objective hybrid iterated greedy algorithm. 

Regarding energy supply strategy, Luo et al. (2013) are among the 
first to investigate EEHFSP considering uniform parallel machine and 
TOU prices. They introduced a new ant colony optimization to solve the 
problem. Ho et al. (2022) proposed a new MIP for two-machine PFSP 
with TOU electricity prices to minimize TEC. They employed an exact 
method by Logic-based Benders decomposition to solve the problem, 
and test results prove the method’s superiority. An et al. (2023) dis
cussed a complex maintenance planning and production scheduling 
problem for serial-parallel manufacturing systems under TOU tariffs. To 
solve the problem, they developed an energy-efficient two-stage main
tenance strategy to minimize the sum of the TEC and TT. 

It is found that the integration of both energy demand strategies and 
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energy supply strategies has hardly been investigated. Wang et al. 
(2020) derived an EEHFSP from a real-world glass factory, in which 
parallel machines with eligibility are at stage 1 and a batch machine is at 
stage 2. They integrated power down and TOU strategies to save energy 
consumption, however, they did not extend this research into k-stage 
EEHFSP with uniform parallel machines. The studied problem in our 
study is a generalization of their work. So far, there is no literature on 
solving EEHFSP with k-stage uniform parallel machines using TOU 
prices and power down mechanism. 

2.2. Rl-assisted metaheuristics 

Due to the NP-hard complexity of EEFSP (Garey et al., 1976; Gupta, 
1988), swarm intelligence and evolutionary algorithms (EA) are usually 
employed to solve the problems. Table 1 also presented a methodolog
ical classification of EFFSP. 

It is demonstrated that most papers have employed Pareto-based 

metaheuristics considering multiple objectives simultaneously in a 
Pareto front, such as NSGA-II, artificial bee colony, and ant colony 
optimization. Lu et al. (2022) designed a Pareto-based hybrid iterated 
greedy algorithm for energy-efficient DFSP, wherein one cooperative 
initialization strategy and one knowledge-based multi-objective local 
search method were invented to boost the algorithm performance. Pan 
et al. (2022) employed a newly developed metaheuristic Jaya to solve 
DFSP. The Jaya algorithm is a Pareto-based EA regarded as easy to 
execute because it has only two parameters. Wang et al. (2023c) have 
incorporated a fast non-dominated sorting method and elite preserving 
strategy from NSGA-II into an EA called firefly algorithm to solve an 
EEHFSP. 

The aforementioned metaheuristics are proven to be effective to find 
Pareto solutions in specific problem settings. A well-problem-tailored 
metaheuristic can find its niche given a problem set. Among the 
widely employed metaheuristics for EEHFSP, NSGA-II has been proven 
to be one of the most promising EAs applied to this problem so far (Chen 

Table 1 
Classification of the research on EEFSP.   

Production 
Environment 

Energy-efficient strategies     

Ref. P H/F D TOU Uniform On-off Speed Objectives Algorithm Local search Selection 

Dai et al. (2013)  ✓    ✓  Cmax, TEC GA, SA 2pXO – 
Luo et al. (2013)  ✓  ✓ ✓   Cmax, TEC ACO PT – 
Ding et al. (2016) ✓      ✓ Cmax, TCE NEH, IG NEH Insr, DC – 
Chen et al. (2019)   ✓    ✓ Cmax, TEC COA Swap, Insr, SA,SD AOS 
Chen et al. (2020b)  ✓     ✓ Cmax, TEC NSGA-II 2pXO, OXO, RA Random 
Öztop et al. (2020) ✓   – – – – Cmax IG, VNS, QL Insr, Swap Sequential 
Wu and Che (2020) ✓      ✓ Cmax, TEC VNS Swap, Insr AOS 
Wang et al. (2020)  ✓  ✓  ✓  Cmax, TEC CH, TS, ACO BS, PT – 
Cui and Lu (2021) ✓   ✓  ✓  TEC GA, DP OXO, Inv Random 
Cheng et al. (2022) ✓      ✓ Cmax, TEC QL, HH GW, Jaya, 2pXO AOS 
Dong and Ye (2022)  ✓    ✓  Cmax, TCE, 

TEC 
SSA, NSGA-III OXO, RA, Insr Random 

Li et al. (2022) ✓   – – – – Cmax, ABC, QL, NEH Swap, 2Swap, B-Insr, 
DC, Insr-Inv 

AOS 

Lu et al. (2022)   ✓   ✓  Cmax, TEC MOHIG OXO, Swap, Insr, DC Random 
Pan et al. (2022)   ✓    ✓ Cmax, TEC Jaya OXO, Insr Sequential 
Shao et al. (2022)   ✓ ✓  ✓  TT, TEC VNS G-Insr, G-Swap Sequential 
Zhao et al. (2021b)   ✓ – – – – Cmax CWWO, VNS Prop, DC AOS 
Zhao et al. (2021a) ✓      ✓ Cmax, TEC TS, ILS Insr, BS Sequential 
Zhao et al. (2022a)   ✓    ✓ TT, TEC QL, HH Insr, Swap, SA, SD AOS 
Zhao et al. (2022b)   ✓    ✓ TT, TEC, RAB QL, BSO Insr, Swap AOS 
An et al. (2023)  ✓  ✓ ✓   TT, TEC GA OXO, 2pXO Random 
Cai et al. (2023)   ✓ – – – – Cmax SFLA, QL Swap, Insr, OXO AOS 
Goli et al. (2023) ✓*      ✓ Cmax, TEC ALO, KA 

MOKSEO 
RW, Swirl, Move Sequential 

Karimi-Mamaghan et al. 
(2023) 

✓   – – – – Cmax IG, QL DC, Insr AOS 

Wang et al. (2023c)  ✓     ✓ Cmax, TEC, 
STD 

FA, VNS, NSGA- 
II, IG 

OXO, PBX, 2pXO, Swap, 
Insr, Inv 

Sequential 

Wang et al. (2023a)  ✓     ✓ Cmax, TEC NSGA-II 2pXO, Swap Sequential 
Yue et al. (2023)  ✓  – – – – TT, TEC HPSMO Insr, PPX Sequential 
This study  ✓  ✓ ✓ ✓  TT, TEC, CTC QVNS-NSGA-II P-DC AOS 

“√” means the factor considered in the article, and “-” means not. 
* Non-permutation flow shop that allows changes in the job order on different machines, which is a generalization of the permutation flow shop. 
Notations: 
Production Environment: P: Permutation flow shop, H/F: Hybrid/Flexible flow shop, D: Distributed flow shop. 
Energy-efficient strategies: TOU: Time of use electricity prices, Uniform: uniform parallel machines, On-off: power down, Speed: Speed-scaling. 
Objectives: Cmax: makespan, TEC: Total Energy Consumption, TCE: Total Carbon Emission, TT: Total Tardiness, STD: Total Starting Time Deviation, RAB: Resource 
Allocation Balancing. 
Local search: XO: Crossover, 1(2)pXO: 1(2)-point XO, PT: Pheromone Trails, Insr: Insertion, NEH Insr: NEH heuristic Insr, SA: Accelerate the speed of an operation, SD: 
Decelerate the speed of an operation, OXO: Order XO, Inv: Inverse, RA: Rearrange, BS: Block shift, B-Insr: Bind Insr, DC: Destruction-Construction, GW: Grey Wolf 
Optimization, G-Insr: Greedy Insr, G-Swap: Greedy Swap, Prop: Propagation RW: Random Walk, PPX: Precedence Preservative XO, P-DC: Pareto-based DC, 
Algorithm: GA: Genetic Algorithm, SA: Simulated Annealing, ACO: Ant Colony Optimization, NEH: NEH heuristic, IG: Iterated Greedy, COA: Collaborative Optimi
zation Algorithm, NSGA-II: The Non-dominated Sorting GA, VNS: Variable Neighborhood Search, QL: Q-learning, CH: Constructive Heuristic, TS: Tabu Search, DP: 
Dynamic Programming, HH: Hyper-heuristic, SSA: Salp Swarm Algorithm, ABC: Artificial Bee Colony Algorithm, MOHIG: Multi-objective Hybrid IG, CWWO: 
Cooperative Water Wave Optimization, ILS: Iterated local search, BSO: Brain Storm Optimization Idea, SFLA: Shuffled Frog-leaping Algorithm, ALO: Ant Lion 
Optimizer, KA: Keshtel Algorithm, MOKSEO: Multi-objective Keshtel and Social Engineering Optimizer, FA: Firefly Algorithm, HPSMO: Hybrid Pareto Spider Monkey 
Optimization. 
Selection: AOS: Adaptive operator selection. 
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et al., 2020b,a; Ding et al., 2021; Wang et al., 2023c,a). Therefore, we 
choose NSGA-II as the algorithm framework to develop a more efficient 
metaheuristic for EEHFSP. 

In recent years, machine learning techniques attract increasing 
attention in solving optimization problems. Wang et al. (2023b) devel
oped a deep reinforcement learning method, LSTM-TD(0) to directly 
solve non-permutation FSP with the minimization of Cmax. The work of 
Wang et al. (2023b) is referred to as “End to end learning” which outputs 
solutions directly from instances. However, only using machine learning 
cannot be suitable for complex combinatorial optimization problems, 
for example, EEHFSP with multiple objectives (Bengio et al., 2021). 

Most works applied RL techniques in their metaheuristics in the 
aspect of parameter setting. Chen et al. (2020a) designed self-learning 
GA based on Q-learning and SARSA to choose key parameters auto
matically, i.e., crossover rate and mutation rate. The proposed algorithm 
is applied to a flexible job shop taking Cmax as the objective. Öztop et al. 
(2020) proposed a general variable neighborhood search (GVNS) 
through Q-learning to solve the no-idle PFSP with the minimization of 
Cmax. The Q-learning was adopted to adjust the parameters of the al
gorithm dynamically, for example, the parameter of the acceptance 
criterion. 

Some papers have adopted RL techniques in FSP for AOS. Traditional 
AOS employs simple added-value methods without any reinforcement 
learning knowledge, such as Chen et al. (2019) and Wu and Che (2020). 
Zhao et al. (2021) used reinforcement learning techniques to learn AOS 
in a distributed assembly no-idle FSP. A propagation operator based on 
the Q-learning and VNS is introduced to a newly developed EA, namely 
cooperative water wave optimization. Cai et al. (2023) defined a novel 
Q-learning process to help shuffled frog-leaping algorithm select a local 
search operator dynamically in a DFSP with the objective of Cmax. Kar
imi-Mamaghan et al. (2023) integrated a Q-learning into a perturbation 
mechanism, boosting an IG algorithm to solve a PFSP with Cmax. Li et al. 
(2022) proposed an improved artificial bee colony algorithm with Q- 
learning for solving PFSP with minimizing the Cmax. 

The above work proved that integrating RL-powered AOS with 
metaheuristics is promising to improve exploration ability. However, 
the major literature focused on AOS in single-objective FSP, ignoring the 
technical problems incurred by multi-objective optimization, e.g., how 
to define reward function in the Q-learning process and how to compare 
two Pareto solutions. In this regard, Cheng et al. (2022) formed a multi- 
objective Q-learning-based hyper-heuristic with bi-criteria to select 
three low-level heuristics, i.e., Grew wolf operator, Jaya operator, and 
GA operator. Our work differs from theirs in selecting local search op
erators rather than complete metaheuristics. 

To the best of our knowledge, among studies with operator selection, 
no one has studied RL-driven AOS in EEHFSP. Thus, designing an 
effective RL-driven metaheuristic in multi-objective EEHFSP is a gap 
need to fill in. 

2.3. Research gaps 

To sum up, we can identify the research gaps as follows:  

• Most research on EEHFSP focused on the minimization of Cmax and 
TEC. Limited literature considers the combination of CTC, TT and 
TEC.  

• The literature considering both the supply side and demand side EES 
is scarce. No study generally integrates TOU price, CPP and power 
down strategy on a k-stage EEHFSP with uniform parallel machines.  

• The majority of previous metaheuristics for EEHFSPs extract no 
knowledge during the search, resulting in blind operator selection. 
The AOS driven by RL algorithms is hardly investigated in EEHFSP.  

• Most literature on AOS focused on single-objective optimization 
problems, ignoring the technical problems incurred by multi- 
objective optimization. Q-learning- and GVNS-driven multi-objec
tive metaheuristics for EEHFSP have seldom been studied yet. 

3. Problem formulation and modeling 

3.1. Problem formulation 

Consider an HFS consisting of s stages. Each stage k ∈ {1,…,m} has a 
set of uniform parallel machines Mk. It is assumed that machines in 
parallel at each stage run at different speeds. The speed of machine mik is 
vik. The operation ojk requires pjk units of time to be processed. If the 
operation ojk is processed on machine mik, it actually requires pjk/vik time 
units to be finished (Chen et al., 2022a; Chen et al., 2022b). 

There are a set of jobs J to be scheduled. Each job j ∈ J needs to go 
through all stages. In each stage k ∈ {1, ...,m}, its operation ojk ∈

{
oj1, .

.., ojm
}

is processed. An operation ojk can be processed on any machine 
mik ∈ Mk at stage k ∈ {1, ...,m}. 

Each job j ∈ J has its due date dj. The completion time of the job j ∈ J 
at the stage k is denoted as Cjk. When a job is completed later than its due 
date dj, tardiness Tj = Cjm − dj occurs. The total tardiness of jobs TT =
∑

j∈J
(
max

{
0,Cjm − dj

} )
. 

The basic assumptions of HFSP are included:  

• The release time of all jobs is zero, and all machines and jobs are 
available at time zero  

• Each job can be processed at one machine at a time.  
• Each machine can process at most one job at a time.  
• The job cannot be interrupted once it begins, namely, preemption is 

not allowed 

In addition to basic assumptions, the additional assumptions are 
given as follows: 

• All machines have four states: processing, standby, reset, and shut
down, and each state corresponds to different energy consumption. 
Machines can be turned down or kept idle after completing a job.  

• Each uniform machine has its processing speed. Higher speed incurs 
higher energy consumption. 

Energy consumption is considered for machining jobs. Three types of 
energy consumption are considered as follows:  

• The basic process energy consumed per unit time (i.e., power) for 
uniform machines at stage k is pek. Based on the power conversion 
factor λik introduced by Mansouri et al. (2016), let each vik corre
spond to a λik. Thus, the actual process power of machine mik is λikpek. 
Usually, a fast machine has higher power than a slow one.  

• When a machine stays standby state, the standby energy is incurred, 
see Fig. 3. The standby power of machine mik is denoted by seik.  

• In order to reduce the standby energy consumption, power down 
mechanism is introduced. That means a machine can be turned off to 
save energy when it is idle. But when turning the machine back on, a 
reset energy will be generated. The reset time is treset and the reset 

Fig. 3. Three types of machine power.  
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power of machine mik is given as; so the reset energy can be easily 
obtained by reik⋅treset (Ding et al., 2021; Luo et al., 2013). 

TOU mechanism is also considered that the electricity price of 
different periods varies. Let f(t) denote the electricity price at period 
t ∈ N, where t is an integer. Thus, the total energy cost TEC =
∑

t∈Nf(t)
∑

k∈S
∑

i∈Mk
Et

ik. Note that CPP mechanism is defined in f(t), 
which charges critical pricing for energy demand peaks. For simplicity, 
Et

ik is defined as the power consumption of each machine at time t ∈ N, 
which is determined by the three types of power, i.e., process power, 
standby power, and reset power. 

In addition, in order to take environmental protection into consid
eration, carbon trading cost CTC is considered. Assume that a factory has 
a carbon emission allowance denoted by EA. Once the carbon emission 
exceeds the allowance, the factory needs to pay for additional carbon 
emission rights in the carbon emission trading market. The carbon 
emission coefficient μ converts electricity consumption into carbon 
emissions. We can obtain CTC = [

∑
t∈N
∑

k∈S
∑

i∈Mk

(
Et

ik × μ
)
− EA] × Cp, 

where Cp is the price of carbon emissions per ton in the carbon trading 
market. Note that CTC and TEC are somewhat related, but are not 
necessarily proportional. CTC is directly related to energy consumption; 
however, TEC is not only affected by energy consumption but also by 
TOU. 

The goal of the MOE-HFS problem is to minimize three objectives, 
which are:  

• Total tardiness TT,  
• Total energy cost TEC,  
• Carbon trading cost CTC. 

The MOE-HFS problem does not only determine how to batch jobs 
onto machines at each stage and when to process, but also determines 
machine states at each period. According to α|β|γ notation, it can be 
summarized as HFs(Qm1, ..., Qmk)|TOU, on − off |{TT,CTC,TEC}. 
Thereby, HFs denotes an HFS with s production stages; Q stands for 
uniform machines with different speeds (Lee and Loong, 2019). 

3.2. Mathematical modeling 

To formally model the problem, the notation is defined as follows in 
Table 2: 

Min 

TT =
∑

j∈J

(
max

{
0,Cjs − dj

} )
(1)  

TEC =
∑

t∈N
f (t)
∑

k∈S

∑

i∈Mk

Et
ik (2)  

CTC =

[
∑

t∈N

∑

k∈S

∑

i∈Mk

(
Et

ik × μ
)
− EA

]

× Cp (3) 

Subject to 
∑

k∈S

∑

i∈Mk

∑

j∈J
at

ikj⩽1, t ∈ N (4)  

∑

t∈N

∑

i∈Mk

bt
ikj = 1, j ∈ J, k ∈ S (5)  

∑

t∈N
bt

ik0 = 1, i ∈ Mk, k ∈ S (6)  

b1
ikj = a1

ikj, i ∈ Mk, j ∈ J, k ∈ S (7)  

bt
ikj⩾at

ikj − at− 1
ikj , i ∈ Mk, j ∈ J, k ∈ S, t > 1 (8)  

∑

t∈N
at

ikj =
∑

t∈N
bt

ikj ×
pjk

vik
, i ∈ Mk, j ∈ J, k ∈ S (9)  

xt
ikyt

ik =
∑

j∈J
at

ikj, i ∈ Mk, k ∈ S, t ∈ N (10)  

Et
ik = xt

ik

(
1 − yt

ik

)
seik + yt

ik

(
1 − xt

ik

)
reik +

∑

j∈J
at

ikjλikpek, i ∈ Mk, k ∈ S, t ∈ N

(11)  
∑

h∈J∪{0}

χikjh =
∑

t∈N
bt

ikj, i ∈ Mk, j ∕= h, j ∈ J (12)  

∑

j∈J∪{0}

χikjh =
∑

t∈N
bt

ikh, i ∈ Mk, j ∕= h, h ∈ J (13)  

Sjk =
∑

i∈Mk

(
∑

t∈N
bt

ikj × t), i ∈Mk, k ∈ S, t ∈ N (14)  

Cjk =
∑

i∈Mk

(
∑

t∈N
bt

ijk ×

(

t +
pjk

vik
− 1
)

), i ∈Mk, k ∈ S, t ∈ N (15)  

Cjk⩽Sj(k+1), j ∈ J, k ∈ S (16)  

Chk −
phk

vik
− Cjk⩾B

(
χikjh − 1

)
, j ∕= h, i ∈ Mk, k ∈ S, j ∈ J ∪ {0}, h ∈ J (17)  

χikjh ∈ {0, 1}, j ∕= h, i ∈ Mk, k ∈ S, j ∈ J ∪ {0}, h ∈ J (18)  

at
ikj ∈ {0, 1}, i ∈ Mk, j ∈ J, k ∈ S (19)  

Table 2 
The notation.  

Sets  

J Set of jobs, j,h ∈ J = {1,…, n}
S Set of stages, k ∈ S = {1,…,m}

Mk Set of machines at the stage k ∈ S, i ∈ Mk = {1,…, lk}
N Set of periods,t ∈ N 
Parameters  
dj Due time of the job j, j ∈ J 
pjk Processing time of operation ojk (job j at the stage k) 
vik The processing speed of machine i at stage k, e.g., vik ∈ {v1, v2 , v3}

for three speed modes 
λik The conversion factor for processing speed vik 
pek The basic power of machines at the stage k 
reik Reset energy consumed per unit time for machine mik 
seik Standby energy consumed per unit time for machine mik 
f(t) Energy price in period t (CNY/MWh) 
treset Time consumed to turn on and turn off the machine 
B A very large positive number 
Cp Price of carbon emissions per ton in the carbon trading market 
EA Emission allowances 
μ Carbon emission per ton of electricity consumed (tCO2/MWh) 
Decision 

Variables  
at

ikj 1 if the operation ojk is processed on the machine mik in time t, and 
0 otherwise 

bt
ikj 1 if operation ojk begins on the machine mik in time t, and 

0 otherwise 
χikjh 1 if job j immediately precedes job h on the machine mik, 

otherwise 0, j ∕= h, j,h ∈ J 
xt

ik 1 if the machine mik is processing or idle, otherwise 0 (see  
Table 3) 

yt
ik 1 if the machine mik is in reset or idle, otherwise 0 (see Table 3) 

Et
ik Energy consumption of machine mik in the period t 

Sjk Start time of job j at the stage k 
Cjk Completion time of job j at the stage k 
Cjs Completion time of job j at last stage s 
Tj Tardiness time of job j  
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xt
ik, y

t
ik ∈ {0, 1}, i ∈ Mk, k ∈ S, t ∈ N (20) 

Eq. (1–3) are three objective functions to minimize, namely TT, TEC 
and CTC. Constraint (4) ensures that only one job is assigned to a ma
chine at a time. Constraint (5) enforces that each operation 
ojk ∈

{
oj1, ..., ojm

}
, j ∈ J, k ∈ S, has to be processed and should not be 

interrupted once it begins. In other words, an operation is started exactly 
once. 

It is worth mentioning that for modeling, we define a dummy job 
indexed by 0 with no processing time. Eq. (6) ensures that the dummy 
job is assigned to each machine. Constraints (7-9) define the connections 
between indicators at

ikj and bt
ikj. It is obvious that if ojk is produced by 

machine mik at t = 1, then it must begin at that time. Eq. (8) ensures that 
when at

ikj changes, bt
ikj follows. Eq. (9) also defines the actual processing 

time of an operation. 
Eq. (10) establishes the connection among at

ikj, x
t
ik and yt

ik. at
ikj = 1 

only when xt
ik = 1 and yt

ik = 1. Constraint (11) defines the energy con
sumption of machine mik in the period t. Table 3 lists the states of a 
machine defined by both xt

ik and yt
ik. For example, when a machine is in 

reset state in time t, xt
ik = 0, yt

ik = 1, and its corresponding power is reik. 
Constraints (12-13) ensure that for a job, there should be only one 

job immediately before it and one immediately after it on the same 
machine. Constraints (14-15) define the start time and completion time 
of an operation. Note that there exists a term for subtracting one time 
unit because t begins at 1. Constraints (16-18) specify the connections 
between start time and completion time. Constraint (16) imposes that 
the next operation of a job cannot start until its previous operation has 
been completed. Constraint (17) enforces that job h should start after 
completing its preceding job j. Constraints (18-20) define all binary 
decision variables. 

The proposed model is a multi-objective mixed integer program. 
Since there is no best solution for a multi-objective optimization prob
lem (MOP), Pareto-optimal solutions are used. A set of Pareto-optimal 
solutions is called non-dominated solutions or Pareto-optimal front. 
The solutions in this set cannot dominate each other, in other words, 
there is no solution that is better than others in all objectives. Therefore, 
this paper attempts to find Pareto-optimal solutions to the proposed 
model. 

3.3. Analysis of EEHFSP properties 

Much research has proved that TT and TEC are mutually contradic
tory (Shao et al., 2022; Zhao et al., 2022b), however, the relationship 
between TEC and CTC is not clear. Here we give properties of the pro
posed EEHFSP to better indicate the conflict between TEC and CTC. 

Property 1. For a TOU strategy, there exist two solutions with the same 
energy consumption whose CTCs are the same but whose TECs are different. 

Proof. Here we give a simple example that satisfies this property. 
CTC is proportional to energy consumption. To better illustrate, the 
calculation of CTC is substituted by energy consumption. 

In Fig. 4(a) TEC = 6× 2 + 5× 5 + 4× 2 = 45, CTC = (2 + 5 + 2)×
1 = 9. In Fig. 4(b) TEC = 6× 5 + 5× 2 + 4× 2 = 48, CTC =

(5 + 2 + 2)× 1 = 9. It can be seen that the CTCs are the same, while TEC 
fluctuates with TOU tariffs. 

Property 2. For a TOU strategy, there exist conflicts between TEC and 

CTC. 

In Fig. 5(a) TEC = 6× 5 + 5× 2 + 4× 2 = 48, CTC = (5 + 2 + 2)×
1 = 9. In Fig. 5 (b) TEC = 6× 2 + 5× 2 + 4× 6 = 46, CTC =

(2 + 2 + 6)× 1 = 10. It is observed that for two solutions the decrease of 
TEC incurs the increase of CTC. 

The above properties of the proposed EEHFSP justify the necessity of 
considering both TEC and CTC. TEC reflects the energy cost while CTC 
reflects the carbon emission. The change of TEC is not always consistent 
with that of CTC. 

The EEHFSP model can be denoted as HFs(Qm1, ...,

Qmk)|TOU, on − off |{TT,CTC,TEC}. Gupta (1988) has proved that the 
HFSP with two stages with the makespan objective is NP-hard when the 
first stage has two identical parallel machines and the second stage has 
only one machine. Based on the complexity hierarchies for scheduling 
problems (Pinedo, 2016), the HFSP with total tardiness objective can be 
deduced to be NP-hard. Considering our problem contains k stages with 
uniform parallel machines, and we minimize three objectives concur
rently along with two practical EES, i.e., TOU and power down, the 
proposed EEHFSP is an NP-hard problem. 

4. Background of GVNS and Q-learning 

4.1. GVNs 

VNS is a metaheuristic that changes the neighborhood structures 
systematically to escape from the local optima. VNS jumps from the 
current solution to a new one only if a solution with higher quality has 
been found (Mladenovic and Hansen, 1997). The main loop includes a 
shaking procedure to escape from the local optimum, a local search to 
improve the solution, a neighborhood change procedure, and an 
acceptance procedure. 

The VNS can easily be changed to other variants depending on the 
search depth and step length of neighborhood change. In our study, we 
refer to the general VNS (GVNS) wherein variable neighborhood descent 
(VND) is integrated into the local search procedure. VND adopts mul
tiple local search operators in a sequential or nested fashion to improve 
the solution (Hansen et al., 2010; Shao et al., 2022). The detailed pro
cedure is shown in Algorithm 1.  

Algorithm 1: General variable neighborhood search  

1: Input: Set of shaking neighborhood structures Nk(k = 1,2, ...,kmax), solution x, 
set of local search operators Nl′(l = 1,2, ..., lmax)

2: Output: an improved solution x  
3: Set k = 1  
4: While k < kmax  

5: Generate a solution x′ at random from the k-th neighborhood of x (x′ ∈ Nk(x))
6: # Shaking procedure  
7: Generate improved solution x″ using VND (x″ ∈ N′

l(x), l = 1,2, ..., lmax)

8: # Local search procedure (Hansen and Mladenovic, 2001)  
9: If x″ is better than the incumbent x then  
10: Set x = x″  

11: Else  
12: Set k = k + 1  
13: End if  
14: End while  

4.2. Q-learning 

Q-learning, first developed by Watkins (1989), is a model-free and 
off-policy RL algorithm based on temporal difference, which converges 
to the optimum action-state value independent of the target policy being 
followed. At each step, the agent perceives the state s of the environment 
and chooses the best action a from a set of actions based on learning 
knowledge. Then the environment would move to the next state s′ while 
at the same time gives feedback called reward. The agent tries to 
maximize the expected cumulative reward through trial-and-error in
teractions with the environment over time. In Q-learning, this expected 

Table 3 
The states of a machine.  

xt
ik yt

ik State Power 

1 1 Processing peik 
1 0 Standby seik 
0 1 Reset reik 
0 0 Shutdown 0  
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cumulative reward of an action-state pair (s, a) ∈ S × A is estimated by 
action-state value Q(s, a) ∈ R, representing the learned experience. 

List all the actions in rows and states in columns, fill in each entry 
with Q(s, a) related to (s, a), then we can get the brain of Q-learning, Q- 
table. The initial Q-table is a zero-value matrix as shown in Table 4. The 
agent will explore from state to state until the stop condition is satisfied. 
Each exploration is called an episode. 

And the updating value of Q(s, a) is shown as below (Watkins, 1989): 

Q(s, a)←Q(s, a)+ α
[

r + γmax
a′

Q(s′, a′) − Q(s, a)
]

(21) 

Where st = s is the current state, a is the action performed, s′ is the 
next state after a is performed, and a′ is the next action in state s′. 
α(0⩽α < 1) is the learning rate controlling the ratio of accepted new 
information. r is the reward after performing action a, and it is calcu
lated by the reward function. γ(0⩽γ⩽1) is the discount factor deter
mining the influence of the future reward max

a′
Q(s′, a′). 

During each iteration, the agent encounters an exploration and 
exploitation dilemma, where it needs to make a tradeoff between 
selecting the action with the maximum Q value so far, and giving a 
chance to execute other actions. Many selection methods are proposed 
(Karimi-Mamaghan et al., 2022), in which ε-greedy policy make a good 
balance using parameter ε. The detailed procedure is: 

A(s) =

{
any one, with probability ε

max
a′

Q(s′, a′), with probability 1 - ε (22) 

With the higher ε, the agent intends to select random actions to 
explore more in the search space, while the lower ε enhances the 
exploitation capability by selecting the action with the best performance 
so far. 

5. The proposed QVNS-NSGA-II 

It is well-known that the basic HFSPs are NP-Hard problems. Due to 
the trade-off of problem complexity and computing efficiency, they are 
widely solved by meta-heuristic algorithms, such as genetic algorithm, 
and tabu search (Lee and Loong, 2019). In addition to the basic machine 
allocation and job sequencing decisions in the HFSPs, the studied 
EEHFSP needs to make decisions in turn on/off decisions of uniform 
parallel machines under TOU considering multiple conflicting 
objectives. 

Thus, this paper proposes a Q-learning and GVNS driven NSGA-II. 
The well-known NSGA-II is adopted as the multiple-objective optimi
zation framework (Deb et al., 2002). We incorporate GVNS into the 
NSGA-II framework to improve the neighborhood exploitation ability of 
NSGA-II, which avoids being trapped into local optimum. Generally, 
GVNS conducts neighborhood change in a random way. We further 
propose a Q-learning driven GVNS, taking advantage of the learning 
knowledge of Q-learning. 

Most of the metaheuristics designed for EEHFSP consider neither EES 
nor knowledge from the previous search. The main novelty of the pro
posed QVNS-NSGA-II in this paper lies in the Q-learning boosted GVNS 
based on search history and current search status. The Q-learning pro
cess enables AOS in selecting neighborhood structures and local search 
operators, which enhances the performance of QVNS-NSGA-II. 
Furthermore, for the purpose of saving energy, an EES operator and 
problem-specific local search operators are first combined. To the best of 

Fig. 4. Same CTCs and different TECs.  

Fig. 5. TEC and CTC change in opposite directions.  

Table 4 
The initial Q-table.  

States Actions  

a1 a2 a3 ⋯ a5 

s1 0 0 0 ⋯ 0 
s2 0 0 0 ⋯ 0 
s3 0 0 0 ⋯ 0 
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
s5 0 0 0 ⋯ 0  
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our knowledge, this paper is among the first to propose Q-learning and 
GVNS driven NSGA-II for EEHFSP. The general flow chart of the pro
posed QVNS-NSGA-II is given in Fig. 6. 

5.1. The NSGA-II framework 

5.1.1. Encoding and decoding 
Encoding aims to transform the complete schedule into chromo

somes. The encoding scheme for the EEHFSP problem needs to contain 
the following decisions: 1) Allocate jobs to machines at each stage. 2) 
Sequence the assigned jobs on each machine. 3) Determine turn on/off 
of uniform parallel machines at each stage. Decoding is the inverse 
process of encoding, which turns chromosomes into solutions. It also can 
determine 1) The standby/reset state of idle machines, and 2) The start 
time and completion time of jobs under TOU. 

A native and direct way to encode the scheme includes multiple 
segments of allocation, sequencing and turn-on/turn-off decisions for all 
stages (Naderi et al., 2010, Yue et al., 2023). The complicated chro
mosomes will incur high computational cost and poor algorithm 

performance (Ruiz and Maroto, 2006). For the sake of simplicity and 
efficiency, we adopt an effective encoding scheme for the EEHFSP 
problem. The encoding scheme only encodes job permutation π = {1,2,
..., n} at the first stage and generates job permutation of later stages 
using List scheduling (LS). LS is widely employed for decoding HFSP in 
literature (Luo et al., 2013; Ruiz and Maroto, 2006; Yu et al., 2018). 

LS leverages the earliest completion time (ECT) rule to dispatch jobs 
onto machines. Note that in uniform parallel machine environment, ECT 
will generate different schedules from the first available machine (FAM) 
rule. Even if a job is allocated to the first available machine, its 
completion time is likely to be larger than that of ECT rule because 
uniform parallel machines run at different speeds (Naderi et al., 2010). 

Under LS, every time jobs are taken one by one in the list and 
assigned to a machine that can complete the job the earliest. This co
incides with the minimization of TT. The job lists at later stages are 
updated based on the completion times of jobs at the previous stage. 

Let πk denotes the job permutation at stage k and πk(q) denotes the 
job at position q in πk. To convert a chromosome into a feasible schedule, 
the procedure of decoding is shown below. 

Fig. 6. Flow chart of the QVNS-NSGA-II.  
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According to Naderi et al. (2010), the complexity of decoding is 
calculated as O

(
n2∑m

k=1lk
)
, where lk is the number of parallel machines 

at stage k.  
Algorithm 2: LS decoding  

1: Input: The sequence of chromosome π1  

2: Output: a feasible schedule  
3: For q = 1,2, ..., n do  
4: Assign the job π1(q) to the machine that can complete the job the earliest  
5: End for  
6: For k = 2, ...,m do  
7: Sort the jobs in non-decreasing order of their completion time at the previous 
stage k − 1 and create a new sequence πk  
8: For q = 1,2, ..., n do  
9: Assign the job πk(q) to the machine that can complete the job the earliest  
10: End for  
11: End for  

5.1.2. Initialization 
The NSGA-II begins with a population of initial individuals. The 

quality of the initial population is of vital importance to the algorithm’s 
performance. The NEH from Nawaz et al. (1983) was recognized as the 
most successful heuristic in PFSP, and it is well adapted to HFSP (Naderi 
et al., 2010). Inspired by the work of Pan et al. (2014), we design a 
specific initialization method based on NEH for EEHFSP. We extend 
NEH with different optimization objectives to generate initial in
dividuals. This objective can be any one of TT, TEC and CTC. The 
detailed procedure is presented in Algorithm 3.  

Algorithm 3: NEH heuristic  

1: Input: A set of jobs n  
2: Output: a feasible schedule π  
3: Generate a job sequence πR by decreasing processing time of jobs  
4: Take the first two jobs and schedule them as π to minimize a certain objective  
5: For i = 3, ..., n do  
6: Take job πR(i) and insert it into all the possible places  
7: Update π the individual with the lowest objective value  
8: End for  

The initialization includes two steps. 

(1) Step 1: Yield three individuals based on Algorithm 2. One indi
vidual use TT as the minimization objective of NEH, one indi
vidual use TEC, and the remaining one uses CTC.  

(2) Step 2: The rest individuals in the population are generated 
randomly. 

This approach provides the algorithm with three excellent in
dividuals in different directions of search space, which avoids an early 
convergence for the lack of diversity and slow convergence due to the 
poor quality of random solutions (Pan et al., 2014). 

In Algorithm 3, we have n(n+1)/2 − 1 insertions in total (Nawaz 
et al., 1983) and each insertion requires an evaluation. The complexity 
of NEH heuristic is O

(
n3∑m

k=1lk
)
, where 

∑m
k=1lk denotes the total number 

of machines (Taillard, 1990). 

5.1.3. Genetic operation 
The genetic operation, namely crossover and mutation, act as the 

backbone to explore solution space and escape from local optimum 
during evolution. Considering the orderliness of the job sequence, 
hereby, two-point order crossover (2p-OXO) and swap sequence mutation 
are employed. 

The 2p-OXO has been widely employed in FSP, which proved to have 
excellent performance (Lu et al., 2022; Pan et al., 2022). As shown in 
Fig. 7, we used an improved variation of classic 2p-OXO, wherein the cut 
points in both parents can be at different positions (Syswerda, 1991). 

Swap mutation is a simple and effective mutation operator (Lu et al., 
2022; Zhao et al., 2021b). Hereby, we extend the swap segment from 
one unit to a sequence. One of the offspring is randomly selected for 
mutation (Fig. 8). 

5.1.4. Elite preservation 
Elite preservation strategy aims to retain the best individuals (i.e., 

elites). To evaluate the quality of multi-objective solutions, fast non- 
dominated sorting (FNS) and crowding-distance calculation are adop
ted in Appendix A. The detailed procedure refers to Deb et al. (2002). 

The Pareto Dominance Operators for two solutions are defined. Op
erators ≺ and ≻ mean “inferior to” and “superior to”, respectively. In 
minimized optimization problems, the smaller the objective value, the 
better the solution, and vice versa. 

Definition 1. (Deb et al., 2002): If a solution x1 Pareto dominates 
another solution x2, it subjects to: 

fj(x1) ≺ fj(x2),∀j ∈ {1, 2, 3, ...} (23)  

where fj(⋅) denote the objective function. 
Based on this Pareto dominance operator, FNS assigns each solution 

Fig. 7. Two-point order crossover.  

Fig. 8. Swap sequence mutation.  
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a rank representing the non-dominated level or Pareto fronts through 
the comparison with other solutions. Each front is dominated by the 
preceding one, for example, rank 1 is the best level (F1); rank 2 is the 
second level (F2), and so on. 

FNS designs two entities for each solution x, namely dominance 
count and the set of solutions dominated by x, decreasing the compu
tational complexity of the naive sorting approach from O

(
MN3) to 

O
(
MN2), where M denotes the number of objectives and N denotes the 

number of individuals in a population. 
Elite preservation first combines the parent population Pt and 

offspring population Qt to form Pt ∪ Qt . Next, all solutions in Pt ∪ Qt are 
sorted into different Pareto fronts using FNS. The next population Pt+1 is 
filled with F1, F2 to the last front Fl in turn until the required population 
number N is exceeded. To eliminate the number of individuals to exactly 
N, the crowding-distance is introduced. 

Crowding-distance indicates an estimate of the proximity or density 
of solutions surrounding a particular solution in the population. A so
lution with a higher crowding-distance suggests a less crowded neighbor 
region, which is preferred for diversity preservation. To preserve just N 
individuals for Pt+1, we sort the solutions in Fl using the Crowded-Com
parison Operator ≺n and ≻n. These operators use both rank and 
crowding-distance, which help to find a Pareto front with evenly 
distributed solutions. 

Definition 2. If a solution i is superior to j, it subjects to (Deb et al., 
2002): 

i≺nj : if (irank < jrank)or(irank = jrankandidistance > jdistance) (24)  

where irank and idistance are the rank and crowding-distance of solution i, 
respectively. 

Here we present a demonstration of elite preservation in Fig. 9. 

5.2. Power down strategy 

In the original NSGA-II, LS decoding method considers only time- 
related objective TT. In order to reduce both TEC and CTC, we resort 
to power down mechanism to identify which idle machine should be 
shut down. 

We exemplify the power down mechanism with the Gantt charts in 
Fig. 10. The green dashed box represents that the machine stays idle 
between two jobs, while the grey dashed box represents the shutdown 
and reset states of the machine. 

As we can see, the power down mechanism turns down the machine 
m12, m22, m32, m33 for a while, reducing the electricity cost without 
affecting TT. The mechanism determines whether it saves costs to shut 

down the machine or keep idle. Meanwhile, the machine will not be shut 
down if there is no available time to reset. 

The power down mechanism dynamically adjusts the states of ma
chines to reduce amounts of energy. We calculate the inter-arrival time 
between the q-th job and the q + 1-th job on mik using the following Eq. 
(25). Let πik denote the job sequence on machine mik, and πik(q) denotes 
the job at position q in mik. 

TIikσik(q)σik(q+1) = Cσik(q+1)k −
pσik(q+1)k

vik
− Cσik(q)k, i ∈ Mk, k ∈ S (25) 

Eq. (26) defines the break-even time of each machine mik. 

TBik =
treseter

ik

es
ik

, i ∈ Mk, k ∈ S (26) 

TBik of each machine mik is the threshold value when reset energy 
consumption equals standby energy consumption. When the condition 
TIikσik(q)σik(q+1) > TBik is satisfied, the machine mik should be shut down, 
otherwise, it would consume more energy in standby state than in reset 
state. Note that each machine mik has its corresponding break-even time 
TBik. 

In order to implement this operator in QVNS-NSGA-II, a detailed 
procedure is introduced. The time complexity of Algorithm 6 is O(nm)

since we have a total of nm operations.  
Algorithm 6: Power down mechanism  

1: Input: a feasible schedule π  
2: Output: an improved schedule π′ for energy saving  
3: For each machine mik do  
4: For q < |πik| do# the q-th job on machine mik is not the last one  
5: If TIikπik(q)πik(q+1)⩾max{TBik, treset} then 
Shut down the machine mik when the job πik(q) is finished; that means 
for the time Cπik(q)k < t⩽Sπik(q+1)k − treset , let xt

ik = 0yt
ik = 0. mik is 

supposed to turn on before the job πik(q+1) begins; that means 
Sπik(j+1)k − treset < t⩽Sπik(j+1)k, let xt

ik = 0, yt
ik = 1.  

6: Else  
7: Keep the machine idle during inter-arrival time TIikπik(q)πik (q+1),  
8: So xt

ik = 1,yt
ik = 0,Cπik (q)k < t < Sπik(q+1)k  

9: End if  
10: End for  
11: End for  

5.3. Neighborhood structures and local search 

As mentioned in Section 4.2, GVNS is composed of a shaking pro
cedure and a local search procedure. Both procedures require a pre- 
defined neighborhood structure set, for clarity, we use the term 
“neighborhood structure” in the shaking procedure and “local search 
operator” in the local search procedure, specifically. 

Fig. 9. Elite preservation.  
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5.3.1. Neighborhood structure 
In the shaking procedure, we consider a simple perturbation operator 

as our neighborhood structure, namely Destruction-Construction (DC). 
This operator is widely used in different metaheuristics such as Iterated 
Greedy (Karimi-Mamaghan et al., 2023) and Adaptive Large Neighbor
hood Search (Gendreau and Potvin, 2019). The original perturbation 
operator includes two parts: the destruction phase which removes d jobs 
randomly from job sequence π, and the construction phase to repair the 
sequence using NEH heuristic (Ruiz and Stützle, 2007). 

The number of jobs possible to be removed ranges from 1 to a limit 
dmax, which equals the number of possible neighborhood structures 
(Karimi-Mamaghan et al., 2023). To avoid expensive evaluation cost 
caused by iteration through all possible insertions, we adapt the con
struction phase, using a first-improvement pivot rule (Naderi et al., 
2010). The inner search process will be terminated either an improved 
solution is found or iterations are over a limit Max_iter. 

The detailed pseudocode is shown as follows.  
Algorithm 7: Pareto-based Destruction-Construction  

1: Input: a feasible schedule π, the number of removed jobs d ∈ [1, dmax], 
maximum iterations without improvement Max_iter.  
2: Output: an improved schedule π′  
3: Define an empty set πR to store the reinserted jobs, π′ = π  
4: For i = 1 to d do  
5: Remove one job from π′ and insert into πR  

6: End for # Destruction phase  
7: Define the number of no improvement as nn, and set nn = 0, i = 1  
8: For 1⩽i⩽d do  
9: Set nn = 0, improve = False  
10: Whilenn < Max_iter do  
11: Insert job πR(i) into the π′ randomly without repetition to get π″  

12: If π″ ≺ π′ then # Pareto-dominance operator  
13: Set π′=π″, improve = True  
14: break # jump out of the while loop  
15: Else  
16: Set nn = nn + 1  
17: End if  
18: End while  
19: If not improve then  
20: Insert job πR(i) into the π′ randomly  
21: End if  
22: End for # Construction phase  

5.3.2. Local search operator 
Local search operators are critical to improving solutions, however, 

general single-objective methods cannot be directly applied to the trade- 
offs of TT, TEC and CTC. Insertion and pairwise swap are widely used in 
the literature, and we modify the classic methods to problem-specific 
ones. We adopt knowledge-based operators critical-path-based local 
search (Zhao et al., 2022b) to avoid blind search while at the same time 

further improve the solutions (Wang and Wang, 2016). Besides, two 
effective local search operators, namely three-point permutation and 
three-segment permutation, are selected (Asefi et al., 2014). 

Fig. 11 illustrates an example of the critical path that is pointed out 
by arrows. 

Jobs in the critical path are defined as critical jobs JC (i.e., job 8, 3, 9, 
1), and the other jobs are called non-critical jobs JR. When the critical 
path is identified, select one job from JC and one job from JR, and the 
following local search can be defined:  

(1) Critical swap (CSwap): Swap the position of JC and JR in π, see 
Fig. 12(a).  

(2) Critical insertion (CInsr): Insert JC to the position just after JR in 
π, see Fig. 12(b).  

(3) Critical inverse (CInv): Inverse the jobs between JC and JR, see 
Fig. 13.  

(4) Three-point permutation (TPP): Randomly choose three adjacent 
genes at any position and perform all of the possible permuta
tions, see Fig. 14(a). The best solution is then used.  

(5) Three-segment permutation (TSP): Randomly choose two cut 
points on the chromosome and split it into three distinct seg
ments. Then perform permutations of the three segments, and 
generate a total of 5 possible new permutations, see Fig. 14(b). 
Finally, evaluate these solutions and select the best one. 

Fig. 10. The effect of power down mechanism.  

Fig. 11. Critical path.  
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5.4. Q-learning driven GVNS 

In the proposed QVNS-NSGA-II algorithm, GVNS is driven by Q- 

learning to select the most appropriate neighborhood structure and local 
search operator during the evolution process. The aforementioned Q- 
learning process requires a set of states/actions and reward function. 
Fig. 15 gives an overview of the QVNS. 

5.4.1. States and actions 
The set of states and actions define the environment that the agent 

can perceive and take response to. Zhao et al. (2021) and Li et al. (2022) 
set the individuals as states to construct Q-table, leading to a tremendous 
state space that can hardly be explored by training. Different from theirs, 
we set the neighborhood structures and local search operators as states. 
Indeed, the state space is limited and effective to reflect a solution. 

Since the shaking and local search procedures are separate, we use S1 
and S2 to denote their sets of states respectively.  

• State S1: All possible states describing the shaking procedure. States 
are dmax neighborhood structures in Section 5.3.1. S1 =

{1,2, ..., dmax}. 

Fig. 12. Critical swap and Critical insertion.  

Fig. 13. Critical inverse.  

Fig. 14. Three-point permutation and three-segment permutation.  
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• State S2: All possible states describing the local search procedure. 
States are five local search operators in Section 5.3.2. S2 =

{CSwap,CInsr,CInv,TPP,TSP}. 

The action set is as same as the corresponding state set, which means 
A1 = S1 and A2 = S2. Fig. 16 presents an example of state set S2 and 
actions set A2, where the arrow indicates a transfer from one state to 
another state (“go-to”). 

The current action of an agent depends on the last neighborhood it 
adopts. After executing a shaking or local search, a reward is calculated 
based on the improvement of solutions. Then Q-value is updated, 
instructing which neighborhood to transfer. 

5.4.2. Reward function 
During the learning process, each operator should be allocated a 

reward, which is immediate feedback from the application of an 
operator. 

Durgut et al. (2021) proposed a reward function that overcomes the 
degeneration or disruption caused by the immediate result. However, it 
is only applicable to single objective evaluation. In order to consider 
multiple objectives in reward assignments, we adapt their reward 
function to a multi-objective version by normalization and summation. 
For a minimization problem, the reward is defined as: 

rt =
∑

k

fkmin

fk(xt)

(
fk(xt) − fk(xt+1)

fkmax − fkmin

)

(27)  

where xt is the initial solution at time t, and xt+1 is the new solution after 
applying a neighborhood structure or local search operator. fk( • )
denote the k-th objective function, fkmax and fkmin denote the worst 
objective value and the best objective value found so far, respectively. 

The reward ensures that if a solution is close to the best objective, it 
will get larger rt; the more a new solution is improved, the larger its 
reward. 

5.4.3. The procedure of the proposed QVNS 
Algorithm 8 presents the details of GVNS with Q-learning process, 

which consists of 2 steps. Step 1 is a shaking procedure as well as Q1 
training. After the execution of shaking, it evaluates the improvement of 
solutions and updates Q1 to select the next action-state. Step 2 in
corporates Q-learning into VND local search, applying all operators in S2 

Fig. 15. The illustration of QVNS.  

Fig. 16. States S2 and Actions A2 of Q-learning.  
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without repetition and updating Q2 to select the next action-state.  
Algorithm 8: GVNS with Q-Learning process  

1: Input: parameters learning factor α, discount factor γ, Epsilon-greedy factor ε, 
initial solution x0, state set S1, S2, action set A1, A2, the number of episodes E, 

Maximum iterations without improvement Max-iter  
2: Output: an improved solution x, trained Q-table  
3: Initialize Q-table Q1, Q2 as zero matrices, Q1=|S1 × A1|, Q2=|S2 × A2|
4: Initialize the global best solution x* = x0  

5: Remember the global best objective f*
k0 and local optimum fk(x0),k = 1,2,3  

6: Select an action a1 = d at random from A1, and set the initial state s1 = d  
7: Select an action a2 = N at random from A2, and set the initial state s2 = N  
8: For t = 1 : E do # For each episode  
9: #Step 1: Shaking procedure and training Q1  
10: x = Pareto-based Destruction-Construction (x0, a1,Max iter)
11: If x ≺ x0 do  
12: # Update the Q1 and action-state for the next episode  
13: Calculate the reward r using equation (27)  
14: Q1 = Q-learning (α, γ, ε, s1, a1, r) using equation (21)  
15: s1, a1= Epsilon-greedy (Q1, s1, a1) using (22)  
16: x0 = x, remember the local optimum fk(x0) = fk(x)
17: End if  
18: If x0 ≺ x* do # Identify the global best solution  

19: x* = x0, remember the global best objective f*
kt = min

(
f*
k(t− 1) , fk(x0)

)

20: End if  
21: #Step 2: VND Local search procedure and training Q2  
22: While S2 ∕= ∅ # Apply every local search operator without repetition  
23: x = Local search (x0, a2)

24: If x ≺ x0 do  
25: # Update the Q2 and action-state for the next episode  
26: Calculate the reward r using equation (27)  
27: Q2 = Q-learning (α, γ, ε, s2, a2, r) using equation (21)  
28: x0 = x, remember the local optimum fk(x0) = fk(x)
29: Else # When there is no improvement, choose the next action  
30: Remove s2, a2 from S2,A2  
31: s2, a2= Epsilon-greedy (Q2, s2, a2)

32: End if  
33: If x0 ≺ x* do # Identify the global best solution  
34: x* = x0, remember the global best objective f*

kt = min
(
f*
kt , fk(x0)

)

35: End if  
36: End while  
37: End for  

The complexity of the proposed QVNS is analyzed as follows. 
The complexity of the shaking procedure. According to Karimi- 

Mamaghan et al. (2023), the complexity of destruction and construction 
(lines 9–10) is O

(
d + dn

∑m
k=1lk

)
as we randomly pick d jobs and reinsert 

them into n possible positions. 
∑m

k=1lk denotes the total number of ma
chines. The worst-case complexity of Q-learning process from lines 
12–16 is O(dmax) because there are at most dmax updates using equation 
(21). 

The complexity of the local search procedure. The only difference 
between local search and shaking is in Line 24. Since we have five local 
search operators, they require O

(
n
∑m

k=1lk
)

when calculating the critical 
path. The complexity of Q-learning update from lines 26–29 is O(5). 

The complexity of the proposed QVNS. Considering we have E epi
sodes in total, the total complexity is: 
O
(
E
(
d + dn

∑m
k=1lk + dmax + n

∑m
k=1lk + 5

) )
. Therefore, the complexity 

of QVNS is O
(
n
∑m

k=1lk
)
. 

6. Computational experiments and results 

This section conducts a series of computational experiments to testify 
the proposed algorithm. First, performance indicators are defined to 
measure the algorithm’s performance. Since EEHFSP lacks standard 
benchmark instances, test instances are randomly generated. Then, 
parameter tuning experiments are conducted to determine the key pa
rameters for the proposed QVNS-NSGA-II. Third, QVNS-NSGA-II is 
compared to classical NSGA-II (Deb et al., 2002) and two state-of-the-art 
multi-objective evolutionary algorithms (MOEA), namely improved 
Jaya (Pan et al., 2022) and modified MOEA/D (Wang et al., 2021). 

Finally, sensitivity analysis experiments are conducted to present 
managerial insights. 

6.1. Experiment settings 

To the best of our knowledge, there is limited previous research with 
benchmark instances on the EEHFSP problem. Test instances are 
randomly generated. Each test instance is denoted as the “number of 
jobs-number of stages-number of machines at each stage” (Luo et al., 
2013). For example, a test instance with 10 jobs, 3 stages, and 4 ma
chines at each stage is denoted as “10-3-4”. The detailed experiment 
settings are given below: 

(i) Due date dj is determined by the following formula (Ding et al., 
2021): 

dj = max
(

0,U
[

P
(

1 − τ − R
2

)

,P
(

1 − τ + R
2

)])

(28) 

where P, τ and R represents the lower bound of makespan, tardiness 
factor and due date factor respectively. denotes the nearest integer 
function. τ∈{0.2,0.4} and R∈{0.6,1.0}. 

(ii) The TOU electricity function is given (Development and Reform 
Commission of Jiangsu Province, 2021): 

f(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

25024n⩽t < 24n + 8

100024n + 8⩽t < 24n + 11
60024n + 11⩽t < 24n + 17

100024n + 17⩽t < 24n + 22

60024n + 22⩽t < 24n + 24

(CNY/MWh), n ∈ {0, 1, 2, 3,

...}. 
The other parameters are shown in Table 5. 
The quality of MOEA depends on convergence and diversity. The 

former reflects the distance between the obtained front and the optimal 
Pareto front, and the latter requires a more even distribution of solu
tions. Here we adopt the following indicators to compare these two 
aspects: 

(i) Coverage metric (CM) (Ding et al., 2016): This indicator indicates 
the percentage of solutions in the Pareto set B dominated by at least one 
solution in the Pareto set A. The closer the CM value is to 1, the better set 
A is. CM is calculated by: 

C(A,B) =
|{b ∈ B|∃a ∈ A : a ≻ bora = b } |

|B|
(29) 

The value C(A,B) reflects the dominance relationship between two 
solution sets. If all the solutions of B are dominated by some solution of 
A, then C(A,B) = 1. Since some solutions in A and B are not dominated 
by each other, C(A,B) and 1 − C(B,A) are not necessarily equal. 

(ii) Number of Pareto solutions (NPS): NPS is equal to the number of 
non-dominated solutions of the Pareto front. A larger NPS indicates a 
more diverse Pareto front. 

(iii) Spacing matrix (SM) (Wang et al., 2017): SM aims to evaluate 

Table 5 
Test instance parameter settings.  

Factors Levels 

Number of jobs 10, 20, and 50 
Number of stages 3, 5 
Number of machines at each stage 3, 4, 6 
Processing time of each operation U[5,10](hour) 
Power of machine U[5,10](105 W) 
Processing speed {1.2, 1.0, 0.8} (Mansouri et al., 2016) 
Conversion rate {1.5, 1.0, 0.6} (Mansouri et al., 2016) 
Standby power of machine 2 
Reset power of machine 4 
Carbon emission coefficient 0.2 (ton/MWh) 
Price of carbon emissions 30 (CNY/ton) 
Emission Allowance 1 ton/(job⋅stage)
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the diversity of the obtained Pareto solutions (uniformly distributed in 
the front). A smaller SM suggests a more even spread of the solutions in a 
Pareto front. SM can be calculated by the following equation 

SM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑A

i=1
(di − d)2

|A|

√
√
√
√
√

(30) 

where di is the distance measure, which is the minimum value of the 
sum of the absolute difference in normalized objective function values 
between the i-th solution and any other solution in the obtained non- 
dominated set A. 

di = min
j∈A∧i∕=j

(
∑M

k=1

⃒
⃒f ′

k(i) − f ′
k(j)
⃒
⃒

)

(31) 

di is the mean value of di, and it is calculated by: 

d =

∑A
i=1di

|A|
(32) 

f′
k(⋅) denotes the normalized objective value of k-th objective of in

dividual x. fkmax and fkmin represent the maximum and minimum value of 
the objective function fk in all tests. 

f ′
k(x) =

fk(x) − fkmin

fkmax − fkmin
, k = 1, 2, 3 (33)  

6.2. Parameter tuning 

The QVNS-NSGA-II contains five significant parameters: population 
size Psize, crossover rate Pc, mutation rate Pm, stop condition of QVNS 
Q-iter and CPU time (CT × n × m second). CT denotes cycle time; n and m 
are the numbers of jobs and stages. Three-level Taguchi method DOE 
experiments (Pan et al., 2022) of these parameters are correspondingly 
conducted using a moderate-scaled instance “20–3-3”. Each parameter 
is regarded as a factor, and three factor levels are considered for each 
factor, see Table 6. 

The orthogonal array L27(35), listed in Table 6, is selected with five 
factors, each at three levels. Without loss of generality, the other pa
rameters are set, i.e., the number of generations Max_Gen = 100, 
learning factor α = 0.1, epsilon factor ε = 0.1, discount factor λ = 0.1, 
maximum DC depthdmax = 8. The performance indicator SM is used as 
the response indicator (Table 7). 

The main effect plot of parameters is shown in Fig. 17. It can be 
observed that CT and Q-iter have more significant effects than Pc. The 
parameters of the QVNS-NSGA-II are set as population size Psize = 120, 
crossover probability Pc = 0.8, mutation probability Pm = 0.3, Q-iter =
3, and CT = 0.8. 

For a fair comparison, all four algorithms adopt the crossover and 
mutation method. All algorithms have the same population size (Psize) 
of 120 and termination condition that CT × n × m is met. 

In NSGA-II (Deb et al., 2002), crossover rate(Pc) and mutation rate 
(Pm) are set as 0.8 and 0.3. In improved Jaya (Pan et al., 2022), power 
down EES is set as energy-efficient strategy. As for modified MOEA/D 
(Wang et al., 2021), critical-path swap is used as the local search 
operator for the objective of makespan, and power down EES is adopted 

to reduce TEC. The parameters are strictly followed from the original 
paper: neighborhood size is set as 10 and crossover rate is set as 0.85. 

All the experiments are coded in Python 3.9 and are executed on a 
laptop computer with Intel i5-11300H 3.10 GHz and 16 GB RAM. Each 
instance of an algorithm is run five times to obtain the average values 
(mean) and standard deviation (std) used for evaluation. 

6.3. Algorithm comparison and analysis 

In this section, QVNS-NSGA-II is compared to classical NSGA-II (Deb 
et al., 2002) and two state-of-the-art MOEAs, namely improved Jaya 
(Pan et al., 2022) and modified MOEA/D (Wang et al., 2021). The 
comparison results of NPS, SM and CM are listed in Tables 8–10. The 
bold values represent the best results among the three algorithms. Hit 
rate records the number of times the algorithm performed the best in all 
instances. 

Table 8 reports the coverage metric between the four MOEAs, for 
simplicity, each algorithm is represented by an initial letter (i.e., C(Q, J) 
for QVNS-NSGA-II and Jaya). As seen from the results, the proposed 
QVNS-NSGA-II has overwhelming superiority in all instances. This 

Table 6 
Levels of parameters.  

Factors Factor levels  

1 2 3 

Psize 80 100 120 
Pc 0.6 0.8 0.9 
Pm 0.1 0.3 0.5 
Q-iter 2 3 5 
CT 0.5 0.8 1.2  

Table 7 
The orthogonal array of DOE.  

No. Psize Pc Pm Q-iter CT SM 

1 80  0.6  0.1 2  0.5  0.091 
2 80  0.6  0.1 2  0.8  0.076 
3 80  0.6  0.1 2  1.2  0.067 
4 80  0.8  0.3 3  0.5  0.085 
5 80  0.8  0.3 3  0.8  0.067 
6 80  0.8  0.3 3  1.2  0.065 
7 80  0.9  0.5 5  0.5  0.097 
8 80  0.9  0.5 5  0.8  0.073 
9 80  0.9  0.5 5  1.2  0.071 
10 100  0.6  0.1 2  0.5  0.070 
11 100  0.6  0.1 2  0.8  0.059 
12 100  0.6  0.1 2  1.2  0.068 
13 100  0.8  0.3 3  0.5  0.082 
14 100  0.8  0.3 3  0.8  0.052 
15 100  0.8  0.3 3  1.2  0.064 
16 100  0.9  0.5 5  0.5  0.097 
17 100  0.9  0.5 5  0.8  0.083 
18 100  0.9  0.5 5  1.2  0.078 
19 120  0.6  0.1 2  0.5  0.076 
20 120  0.6  0.1 2  0.8  0.074 
21 120  0.6  0.1 2  1.2  0.064 
22 120  0.8  0.3 3  0.5  0.074 
23 120  0.8  0.3 3  0.8  0.054 
24 120  0.8  0.3 3  1.2  0.084 
25 120  0.9  0.5 5  0.5  0.081 
26 120  0.9  0.5 5  0.8  0.057 
27 120  0.9  0.5 5  1.2  0.081  

Fig. 17. Main effect plot of parameter tuning.  
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proves QVNS-NSGA-II has great capability to find solutions with better 
convergence than the other three MOEAs. Such a situation can be 
explained by the fact that QVNS-NSGA-II leverages new NEH heuristic 
and Q-learning-driven GVNS to exploit more promising solution space 
with high efficiency. 

Table 9 presents NPS comparison between the NSGA-II, improved 
Jaya, modified MOEA/D, and QVNS-NSGA-II. It can be seen that QVNS- 
NSGA-II outperforms the other three algorithms in finding diverse so
lutions in most cases. The proposed QVNS-NSGA-II can even obtain 
three to five times more Pareto solutions than Jaya and MOEA/D. 

When QVNS-NSGA-II does not perform the best in NPS, QVNS-NSGA- 
II has a much lower standard deviation of NPS than NSGA-II. This in
dicates better robustness of our algorithm. For example, in instance 
50–5-3, QVNS-NSGA-II has a much lower standard deviation (3) of NPS 
than NSGA-II (33). 

Table 10 summarizes the SM comparison results of four MOEAs. 
QVNS-NSGA-II still outperforms the other three algorithms in the ma
jority of instances (10/18). 

To further illustrate the comparison results of the four algorithms, 
the boxplot of SM is given below. In Fig. 18, the SM values of QVNS- 
NSGA-II are averagely lower with a narrower interval range than the 

other three MOEAs. 

6.4. Statistical test and visualization of solutions 

To make the comparison results convincing statistically, paired- 
sample t-tests are conducted to eliminate stochastic error (Ding et al., 
2016). The term “t-test (A, B)” in the first column suggests the conducted 
paired-sample t-test between algorithm A and B. p-value results from the 
hypothesis tests are presented in Table 11. The significance level is set as 
95% (α = 0.05). Note that the t-test (A, B) on CM compares the differ
ence between C (A, B) and C (B, A). 

The results show QVNS-NSGA-II significantly outperforms the other 
three algorithms in terms of CM, SM and NPS in the statistical sense. 
Specifically, QVNS-NSGA-II performs better in searching diverse and 
high-quality Pareto front solutions than NSGA-II, improved Jaya and 
modified MOEA/D. 

Furthermore, the 3D scatter plots of the Pareto fronts by four MOEAs 
are also given in Fig. 19. The axes represent three objective functions, 
namely TT, TEC and CTC, respectively. The confidence level is set as 
95% to obtain a 3D confidence ellipsoid (green), which describes the 
Pareto front in 3D space. We take 20–5-4 and 50–3-6 as examples of 
medium- and large-scale instances. 

From Fig. 19, the Pareto solutions generated by QVNS-NSGA-II are 
significantly superior to others. The confidence ellipsoid is close to the 
coordinate origin, which visually reflects the convergence to the optimal 
front. Also, QVNS-NSGA-II provides much more diverse solutions that 
can help decision-makers to select based on preference. 

The reason why QVNS-NSGA-II outperforms NSGA-II, Jaya and 
MOEA/D lies in the QVNS procedure. GVNS takes advantage of 
knowledge from Q-learning to achieve AOS in the DC phase and local 
search phase. 

RL-driven AOS lightens the burden of blind search, enabling appro
priate switches among DC neighborhood structures and local search 
operators without following a trajectory. This provides the algorithm 
with higher exploration and exploitation capabilities. 

Considering the good balance of convergence and even distribution 
of the solutions, QVNS-NSGA-II is highly recommended to solve the 
multi-objective hybrid flow shop scheduling problem. 

6.5. Sensitivity analysis 

6.5.1. Trade-offs between three objectives 
We further investigate the relationship between the three objectives. 

Fig. 20 and Fig. 21 show the trade-offs between the three objectives of 

Table 8 
The comparison result based on CM.   

C(Q, N) C(N, Q) C(Q, J) C(J, Q) C(Q, M) C(M, Q)  

mean std Mean std mean std mean std mean std mean std 

10–3-3 0.89 0.16 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
10–3-4 0.88 0.11 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
10–3-6 0.98 0.01 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
10–5-3 0.96 0.05 0.00 0.00 0.99 0.01  0.00  0.00  1.00  0.00  0.00  0.00 
10–5-4 0.84 0.14 0.00 0.00 0.98 0.03  0.00  0.00  1.00  0.00  0.00  0.00 
10–5-6 0.98 0.02 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
20–3-3 0.79 0.17 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
20–3-4 0.98 0.03 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
20–3-6 0.57 0.12 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
20–5-3 0.81 0.19 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
20–5-4 0.63 0.22 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
20–5-6 0.84 0.13 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
50–3-3 0.75 0.15 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
50–3-4 0.75 0.10 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
50–3-6 0.58 0.11 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
50–5-3 0.80 0.18 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
50–5-4 0.95 0.06 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
50–5-6 0.85 0.12 0.00 0.00 1.00 0.00  0.00  0.00  1.00  0.00  0.00  0.00 
Hit rate 18/18 0/18 18/18 0/18 18/18 0/18  

Table 9 
The comparison result based on NPS.  

Instance NSGA-II Jaya MOEA/D QVNS-NSGA-II  

mean std mean std mean std mean std 

10-3-3 27 8 6 2 10 2 38 7 
10-3-4 31 10 5 2 8 4 41 11 
10-3-6 89 5 20 7 13 6 77 3 
10-5-3 37 15 8 2 7 1 52 7 
10-5-4 37 14 9 2 7 2 47 5 
10-5-6 80 8 8 3 17 7 91 4 
20-3-3 24 6 5 1 10 5 41 9 
20-3-4 33 5 8 4 10 3 38 8 
20-3-6 20 8 6 2 12 3 51 7 
20-5-3 14 6 6 4 5 2 33 8 
20-5-4 23 6 3 3 7 2 40 6 
20-5-6 34 11 6 3 5 2 37 10 
50-3-3 25 10 9 4 6 1 24 4 
50-3-4 24 11 5 4 7 3 28 8 
50-3-6 21 4 5 2 5 2 29 8 
50-5-3 40 33 7 3 6 2 29 3 
50-5-4 35 12 9 3 9 3 24 9 
50-5-6 25 7 6 3 6 3 29 10 
Hit rate 4/18 0/18 0/18 14/18  
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instance “10–3-3” in 3D and 2D respectively. 
Fig. 20 demonstrates that TT, TEC and CTC in a Pareto solution al

ways conflict with each other. Thus, it is not intuitive for a decision 
maker to choose an appropriate solution from a group of Pareto solu
tions considering the conflicts between the three objectives. 

Fig. 21 shows 2D scatter plots concerning the combination of two 
objectives. It can be seen from Fig. 21(a) and Fig. 21(b) that TEC and 
CTC decrease greatly with the increase of TT. The reason is that a loose 
TT makes the use of slow-speed machines possible, which consumes less 
power than high-speed ones. Another reason is that the allocation of jobs 
onto the off-peak periods with low electricity prices leads to an increase 
in TT. 

The decrease tendency can be divided into 2 stages: rapid decrease 
stage and mild decrease stage. In the rapid decrease stage, TEC and CTC 
go down sharply when TT increases. In the mild decrease stage, TEC and 
CTC decline moderately when TT grows. Thus, in the rapid decrease 

stage, TEC and CTC can be improved significantly at the expense of a 
slight deterioration of TT. 

It is observed from Fig. 21(c) that CTC and TEC have a somewhat 
positive correlation because they are energy consumption-related. 
However, the increase of TEC is not necessarily followed by the in
crease of CTC due to the effect of TOU mechanism. The decision-maker 
is supposed to select a schedule with a lower CTC given the same TEC. 

6.5.2. Effect of different TOU tariffs 
TOU mechanisms aim to encourage electricity users including 

manufacturers to adjust the temporal schedule of their electricity de
mands. However, TOU price varies with the season depending on sea
sonal demand differences and local electricity system capabilities. It is 
usually defined in advance for periods of a day, week, month or year 
(Shrouf et al., 2014). For example, China has issued documents to 
enhance effect of TOU tariffs including measures that adopting CPP in 
summer, changing TOU based on seasons (National Province Develop
ment and Reform Commision, 2021). Hence, it is important for man
agers to figure out how the TOU tariffs affect the scheduling results. A 
moderate-scaled instance “20–3-3” is employed to obtain Pareto 
optimal solutions under six different TOU tariffs in terms of TT, TEC and 
CTC. 

Six TOU tariffs are formulated for sensitivity analysis in Fig. 22. TOU 
tariff (1) maintains the same price all the time as a control group. TOU 
tariff (4) refers to Development and Reform Commission of Jiangsu 
Province (2021) for spring and fall seasons. TOU tariffs (2) and (3) are 
the variants of (4) using a lower off-peak price (200CNY/MWh) and a 
lower on-peak price (750CNY/MWh), respectively. Both (5) and (6) 
employ CPP policy considering the electricity demands in summer and 
winter are much higher than those of spring and fall. 

In Fig. 23, TT sees no apparent trend by adjusting the price and the 
period of TOU tariffs. There is no significant difference regarding the 
total tardiness TT by different TOU tariffs, indicating that adopting the 
TOU mechanisms can hardly affect product delivery. 

It is observed from Fig. 24 that TOU tariffs have a significant impact 
on TEC. TOU tariffs (2) and (3) lead to much lower TEC than no TOU 
tariff (1) does. This means the use of TOU tariffs (2) and (3) can have a 
positive effect on electricity cost-saving for manufacturers. Statistically, 
the TEC under TOU tariff (4) is similar to the TEC under no TOU tariff 
(1). The TEC under TOU tariff (4) is much larger than the TECs under 
TOU tariffs (2) and (3) because the prices of electricity periods increase. 

Similarly, there is a significant increase in TEC under TOU tariff (4) 
as the CPP policy is employed. In a broader sense, TOU tariffs vary with 
seasons. The fluctuation of TEC inspires manufacturers to allocate more 

Table 10 
The comparison of MOEAs based on SM.  

Instance NSGA-II Jaya MOEA/D QVNS-NSGA-II  

mean std mean std mean std mean std 

10-3-3 9.74E-02 3.13E-02 2.76E-01 2.82E-01 2.02E-01 7.49E-02 7.77E-02 2.37E-02 
10-3-4 1.22E-01 1.11E-02 6.32E-01 4.97E-01 1.89E-01 1.50E-01 1.34E-01 6.78E-02 
10-3-6 6.77E-02 1.19E-02 4.11E-01 2.80E-01 5.81E-02 6.86E-02 6.52E-02 1.33E-02 
10-5-3 1.59E-01 5.95E-02 2.44E-01 2.02E-01 1.50E-01 8.85E-02 6.43E-02 1.72E-02 
10-5-4 9.34E-02 3.24E-02 1.33E-01 1.91E-02 2.37E-01 3.84E-02 8.52E-02 1.99E-02 
10-5-6 4.07E-02 1.56E-02 3.21E-01 2.09E-01 2.40E-01 9.64E-02 5.17E-02 7.29E-03 
20-3-3 1.90E-01 2.06E-01 1.28E-01 7.51E-02 1.23E-01 4.59E-02 1.23E-01 6.05E-02 
20-3-4 1.40E-01 4.48E-02 2.32E-01 1.40E-01 1.45E-01 7.14E-02 7.90E-02 1.42E-02 
20-3-6 1.51E-01 1.00E-01 2.58E-01 1.53E-01 1.54E-01 1.08E-01 1.12E-01 2.41E-02 
20-5-3 8.46E-02 1.72E-02 2.26E-01 1.74E-01 2.02E-01 2.14E-01 1.24E-01 3.06E-02 
20-5-4 1.26E-01 6.35E-02 6.42E-02 9.47E-02 1.08E-01 3.20E-02 8.12E-02 3.44E-02 
20-5-6 8.94E-02 2.85E-02 3.32E-01 5.47E-02 1.03E-01 8.04E-02 8.41E-02 3.44E-02 
50-3-3 1.23E-01 9.41E-02 2.58E-01 1.47E-01 7.18E-02 5.38E-02 7.83E-02 1.64E-02 
50-3-4 1.11E-01 3.88E-02 2.42E-01 1.31E-01 6.89E-02 1.55E-02 7.49E-02 2.79E-02 
50-3-6 8.75E-02 4.68E-02 3.65E-01 7.45E-02 9.12E-02 1.24E-01 8.35E-02 2.28E-02 
50-5-3 8.74E-02 4.47E-02 4.70E-01 3.36E-01 1.36E-01 9.41E-02 1.45E-01 4.86E-02 
50-5-4 1.29E-01 4.97E-02 3.05E-01 2.53E-01 1.48E-01 7.64E-02 1.05E-01 4.05E-02 
50-5-6 9.24E-02 2.64E-02 4.33E-01 4.28E-01 1.15E-01 5.65E-02 7.90E-02 2.96E-02 
Hit rate 4/18 1/18 2/18 10/18  

Fig. 18. The boxplot of SM results.  

Table 11 
Paired-sample t-tests for MOEAs on CM, SM and NPS (α = 0.05, p-value).   

CM SM NPS 

t-test (QVNS-NSGA-II, NSGA-II)  0.000  0.044  0.014 
t-test (QVNS-NSGA-II, Jaya)  0.000  0.000  0.000 
t-test (QVNS-NSGA-II, MOEA/D)  0.000  0.000  0.000  
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orders into seasons with TOU tariffs (2), (3) and (4) in order to save TEC. 
In addition, CTC remains the same under different TOU tariffs. This 

means the use of TOU mechanisms has a limited impact on CTC savings 
for manufacturers (Fig. 25). 

7. Conclusion 

This paper investigates an energy-efficient hybrid flow shop sched
uling problem with production- and environment-related objectives 
(total tardiness TT, total energy cost TEC and carbon trading cost CTC) 
simultaneously. A novel mixed-integer nonlinear programming model is 
presented, which considers uniform parallel machines and practical EES 
in both energy-supply and -demand sides, i.e., time-of-use tariffs and 
power down strategy, respectively. Then the properties of the problem 

are analyzed. 
To solve the problem, we integrate RL, particularly Q-learning al

gorithm, into GVNS to achieve adaptive operator selection in the 
shaking and local search phase. Q-learning leverages the learned expe
rience of Q-tables to select the most appropriate operator from a set of 
efficacious neighborhood structures and problem-specific local search 
operators. Then we first combine the Q-learning driven GVNS, a multi- 
objective NEH heuristic, and NSGA-II and propose a new algorithm 
named QVNS-NSGA-II. To the best of our knowledge, this is among the 
first research that combines metaheuristics with RL to solve EEHFSP. 

We conduct a comprehensive set of experiments to evaluate the 
performance of our proposed algorithm. We compare the well-tuned 
QVNS-NSGA-II with a classic metaheuristic NSGA-II and two state-of- 
the-art metaheuristics, namely improved Jaya and modified MOEA/D. 
The experiment results show that the proposed algorithm can find more 
diverse Pareto solutions with high quality. This contributes to the Q- 
learning driven GVNS to prevent the search from being trapped into 
local optima. We can conclude that the proposed algorithm outperforms 
the three metaheuristics significantly for EEHFSP. 

In addition, some management insights are gained from sensitivity 
analysis. As TT increases, TEC and CTC witness rapid decrease followed 
by mild decrease. Decision-makers can make a compromise between the 
three objectives. Besides, the analysis of different TOU tariffs demon
strates that TOU tariffs and CPP policy have a great impact on TEC, 
however, it can hardly affect TT and CTC. Manufacturers should allocate 
more orders into seasons with specific TOU tariffs that can save TEC 
when TT and CTC are stable. 

Limitations and future directions are summarized. This paper designs 
the same action set and state set, both of which are neighborhood 
structures/ local search operators. However, this representation cannot 
take into account the quality of the solution or the iteration of the 
metaheuristic. The definition of action and state sets can be further 
investigated in the future. Besides, future research can investigate the 
integration of reinforcement learning in more phases of metaheuristics, 
such as initialization, parameter tuning, and fitness calculation. It is also 
interesting to employ more advanced and state-of-the-art RL techniques 
for EEHFSP. 
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Fig. 19. 3D scatter plot of four MOEAs with confidence ellipsoids.  

Fig. 20. Trade-offs between 3 objectives of instance “10-3-3″.  
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Fig. 21. Trade-offs between any 2 objectives of instance “10-3-3″.  

Fig. 22. Six TOU tariffs with different periods and prices.  

Fig. 23. Box plots of TT by different TOU tariffs.  
Fig. 24. Box plots of TEC by different TOU tariffs.  

P. Li et al.                                                                                                                                                                                                                                        



Computers and Operations Research 159 (2023) 106360

21

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research was supported by the National Natural Science Foun
dation of China (52075259), the Qing Lan project, the China Post
doctoral Science Foundation (2021T140320, 2019M661839), and 
Sichuan Province Engineering Technology Research Center of Broad
band Electronics Intelligent Manufacturing.  

Appendix A. Fast non-dominated sorting and crowding distance calculation  

Algorithm 4: Fast non-dominated sorting  

1: Input: a population P  
2: Output: Pareto fronts and ranks  
3: For each p ∈ P do  
4: Define Sp as the set of solutions that the solution p dominates, np as the 
number of solutions which dominate the solution p  
5: Set Sp = ∅,np = 0  
6: For each q ∈ P do  
7: If p ≻ q then  
8: Set Sp = Sp ∪ {q}
9: Else if p ≺ q then  
10: Set np = np + 1  
11: End if  
12: If np = 0 then  
13: Set prank = 1 # prank. is the rank of p  
14: Set F1 = F1 ∪ {p} #F1 is the (first) Pareto front  
15: End if  
16: End for  
17: Set i = 1  
18: While Fi ∕= ∅  
19: Set Q = ∅  
20: For each p ∈ Fi  

21: For each q ∈ Sp  

22: nq = nq − 1  
23: If nq = 0 then# q belongs to the next front  
24: Set qrank = i + 1  
25: Set Q = Q ∪ {q}
26: End if  
27: End for  
28: End for  
29: Set i = i + 1  
30: Set Fi = Q  
31: End while   

Algorithm 5: Crowding-distance calculation  

1: Input: a Pareto-front Fi  

2: Output: crowding-distance of a solution in Pareto-front Fi  

3: Let l denote the number of solutions in the Pareto-front Fi  

4: For each k do  
5: Set Fi[k]distance = 0  
6: End for  
7: For each objective fj do 

(continued on next page) 

Fig. 25. Box plots of CTC by different TOU tariffs.  
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(continued ) 

Algorithm 5: Crowding-distance calculation  

8: Sort individuals in ascending order using each objective value,Fi = sort
(

Fi, fj
)

9: Set Fi[1]distance = Fi[l]distance = ∞  
10: For i = 2 to (l − 1) do  

11: Set Fi[i]distance = Fi[i]distance +
(

fj(Fi[i + 1] ) − fj(Fi[i − 1] )
)/(

fmax
j − fmin

j

)

12: End for  
13: End for  
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